HEAT2
A PC-program for heat transfer in two dimensions.
Manual with brief theory and examples.

HEAT2 version 4.0 and HEAT2W version 1.02

November 16, 1999

Thomas Blomberg
5. WORKING WITH HEAT2

5.1 LOADING AND SAVING INPUT DATA ..39
5.2 INSERTING MESH COORDINATES ..39
5.3 THERMAL PROPERTIES ..41
5.4 BOUNDARY CONDITIONS ..42
5.5 INITIAL TEMPERATURES ..43
5.6 INTERNAL MODIFICATIONS ..43
 5.6.1 Introduction ..43
 5.6.2 Defining internal modifications types ..44
 Note on hole with air, radiation and ventilation (type G) ..46
 5.6.3 Defining areas ...47
5.7 FUNCTIONS ...47
 5.7.1 Sinusoidal function ..48
 5.7.2 Step-wise constant and step-wise linear function ...49
 5.7.3 Example 1 - sinusoidal function with a time period of one year ...49
 5.7.4 Example 2 - sinusoidal function with a time period of one day ..50
 5.7.5 Example 3 - step-wise constant function ..51
 5.7.6 Example 4 - step-wise linear function ..51
5.8 INTERNAL RESISTANCES ...51
5.9 SOLVING THE PROBLEM ..52
 5.9.1 Steady-state stop criteria ..52
 5.9.2 Successive over-relaxation used in the steady-state calculations ..53
 5.9.3 Simulation time for transient calculation ..53
 5.9.4 Simulation window ..53
 5.9.5 Screen update ..54
 5.9.6 Reset ...54
5.10 OUTPUT ..54
 5.10.1 Boundary flows ..54
 5.10.2 Heat flows for internal modifications ..55
 5.10.2.1 Example 1 ..55
 5.10.2.2 Example 2 ..56
 5.10.3 Results for radiation ...58
 5.10.4 Temperatures and heat flows at a point ...58
5.11 CONDUCTANCES AND CAPACITIES TO FILE ..59
5.12 TEMP (MATLAB) TO FILE ..60
5.13 THE RECORDER ..60
 5.13.1 What can be recorded? ...63
5.14 CHANGING THE RECORD CHART ..64
 5.14.1 Introduction ...64
 5.14.2 Help ...64
 5.14.3 Editor design ..64
5.15 INFO LOG ...65
5.16 GRAPHICS ...66
 5.16.1 Introduction ...66
 5.16.2 Basic commands ..66
 5.16.3 Menu item File ..67
 5.16.3.1 Saving images ..67
 5.16.3.2 Printing images from HEAT2 ..68
 5.16.4 Menu item Options ..69
 5.16.4.1 Viewing thermal conductivities and heat capacities ...70
 5.16.4.2 Outlined materials ...71
 5.16.4.3 Absolute lengths ..72
5.16.4.4 Menu item Settings .. 72
5.16.5 Menu item Bounds .. 73
5.16.6 Menu item T and Q .. 73
5.16.6.1 Better picture quality with pixel by pixel drawing options ... 75
5.16.6.2 Heat flow magnitude .. 76
5.16.6.3 Heat flow arrays ... 77
5.16.6.3.1 Options for heat flow arrays 77
5.16.6.3.2 Printing heat flow arrays 77
5.16.6.4 Viewing isotherms ... 81
5.16.6.5 Inverted gray-scale ... 82
5.16.6.6 Showing temperatures and heat flows in cavities ... 83
5.16.7 Menu item Tools .. 83
5.16.8 Menu item Settings .. 84

6. HEAT2W - GRAPHICAL PREPROCESSOR FOR HEAT2 85
6.1 INTRODUCTION ... 85
6.2 DRAWING, MOVING, AND CHANGING OBJECTS 85
6.3 USING THE CLIPBOARD ... 88
6.4 EDITING THE MATERIAL LIST .. 88
6.5 WRITING THE INPUT FILE FOR HEAT2 89
6.6 MAPPING THE "REAL WORLD" INTO THE DRAWING AREA 89
6.7 DRAWING AREAS WITH INTERNAL MODIFICATIONS IN HEAT2W 89
6.8 LIMITATIONS IN HEAT2W VERSION 1.02 91

7. CALCULATIONS USING PIPES .. 91
7.1 PIPE WITH A GIVEN HEAT FLOW ... 91
7.1.1 Pipe approximated with a square .. 91
7.1.2 Pipe approximated with enclosing steps 91
7.2 PIPE WITH A GIVEN TEMPERATURE 92
7.2.1 Pipe resistance taken into account 92
7.2.2 Pipe resistance neglected .. 92

8. PERFORMANCE .. 93
8.1 HIGHER NUMERICAL PERFORMANCE 93

9. EXAMPLES ... 95
9.1 EXAMPLE 1 - A WALL WITH A JOIST 95
9.1.1 Introduction ... 95
9.1.2 Input in HEAT2W ... 95
9.1.3 Input continued in HEAT2 .. 96
9.1.4 Input using only HEAT2 .. 99
9.2 EXAMPLE 2 - HEAT LOSS FROM A HOUSE WITH A CELLAR 101
9.2.1 Introduction ... 101
9.2.2 The input mesh .. 101
9.2.3 Material data ... 104
9.2.4 Boundary conditions .. 104
9.2.5 The simulation .. 106
9.2.6 Transient simulation .. 107
9.2.7 Input using HEAT2W ... 111
9.3 EXAMPLE 3 - HEAT FLOW THROUGH A WALL WITH METAL STUDS 114
9.3.1 Introduction ... 114
9.3.2 Input mesh ... 114
9.3.3 Calculations for different meshes 115
9.3.4 Conclusions .. 118
9.4 EXAMPLE 4 - ROOF SECTION WITH HOLLOW BRICKS 118
1. Introduction

1.1 How to avoid reading this manual

For a quick start read Chapter 4 Overview of input.

1.2 Introduction to HEAT2 and HEAT2W

1.2.1 Applications

HEAT2 is a PC-program for two-dimensional transient and steady-state heat conduction within objects that can be described in a rectangular grid. It belongs to the latest generation of computer models from the Lund Group for Computational Building Physics. It is well adapted to the following applications within building physics:

- Analysis of thermal bridges
- Calculation of U-values for building construction parts
- Estimation of surface temperatures (surface condensation risks)
- Calculation of heat losses to the ground from a house
- Optimization of insulation fitting
- Analysis of floor heating systems
- Analysis of window frames

There are also two related programs for heat conduction in three dimensions HEAT3 (Blomberg, 1998), and in cylindrical coordinates HEAT2R (Blomberg, 1994).

1.2.2 Features

The user works with an input mesh that facilitates and minimizes the input procedure. The time to generate the complete input for a reasonably complicated case is less than 10 minutes after a few hours' experience of the program. The following list shows some features:

- Extensive graphical capabilities: figures showing geometry, materials, numerical mesh, boundary conditions, temperature field, isotherms. Features: zoom, panning, rotation, color/gray-scale, high-resolution (600 DPI) printing. Any heat flow and temperature can be recorded and shown during the simulation.
- Any structure consisting of adjacent or overlapping rectangles with any combination of materials may be simulated. Up to 62500 (250 x 250) nodes may be used.
- Boundary conditions may be a given heat flow, or a temperature with a surface resistance. Temperatures and heat flows may vary in time by one of the following functions: sinusoidal, stepwise constant or linear (data may be imported/exported from/to programs such as Excel).
- Available modifications: heat sources/sinks, internal boundaries of prescribed temperature, internal regions containing air or fluid of a single temperature, internal resistances, radiation inside cavities.

1.2.3 Cartesian coordinates

HEAT2 solves most of the heat conduction problems that can be described in Cartesian coordinates. This tie to rectangular coordinates may be a limitation in some cases, but it often reduces the amount of input needed from the user. In addition to this, building technology is often a “Cartesian world”. Sloped boundaries, such as sloping insulation under a concrete slab edge, have to be modeled in HEAT2 by step-wise pieces.
1.2.4 Numerical method

HEAT2 solves the heat conduction equation by the method of explicit finite differences, as described in Chapter 3. The user chooses the computational mesh, and the stable time-step is calculated automatically. In the steady-state case, fast computation is achieved by over-relaxation.

The time required to solve a reasonably complicated steady-state problem with 10 000 computational nodes is usually less than a minute on a Pentium.

1.2.5 Preprocessor HEAT2W

HEAT2W is a CAD-like drawing program that makes it even simpler to generate input for a wide range of heat transfer problems. The geometry is built using rectangles of different materials that may overlap each other. HEAT2W generates an input file that is imported into HEAT2. The user gives the boundary conditions in HEAT2 before solving the problem. Figure 1.1 shows a construction (window frame section) drawn in HEAT2W. Figure 1.2 and Figure 1.3 show calculated temperatures and heat flows, respectively.

Figure 1.1: A window frame section as given in HEAT2W.
Figure 1.2: Calculated temperature field in HEAT2.

Figure 1.3: Calculated heat flows and isotherms in HEAT2.

1.3 Update info for HEAT2 version 4

HEAT2 version 4 reads input files from former versions, but files saved with version 4 should not be used by earlier version. A new material file (MTRL40.TXT) will be installed. You can modify this in an editor such as Notepad, Write or Word. The following lists show new features compared with version 3.

1.3.1 Graphics
- Better picture quality with pixel by pixel drawing options of temperature and heat flow fields
- Drawing of heat flow magnitude in color or in black and white. This makes it visually simpler to determine thermal bridges and to improve designs by optimizing the insulation at areas with large heat flows.
- Arrays indicating magnitude and direction of heat flow
- Other new graphics features such as outlined materials and indication of absolute lengths to each mesh point
1.3.2 Performance
• Higher numerical performance. HEAT2 version 4 is up to 35% faster than version 3.

1.3.3 Improved recording of data
• The new recorder may save up to 25 different values at specified intervals, such as temperatures and heat flows at given points, heat flow through boundary segments, through internal modification areas, and through internal lines.

1.3.4 Miscellaneous improvements
• A simple mesh generation option is added.
• Added feature to internal modifications with radiation in a cavity. A room may e.g. be ventilated with an outdoor temperature that varies sinusoidally.
• The maximum number of areas with internal modifications is extended from 20 to 100. This may be useful for analysis of floor heating with many pipes.
• Conductances and capacities may be written to file.
• Temperature field may be written to file and easily imported into Matlab.
• Temperatures, heat flows, and numerical cell indices may be presented at arbitrarily chosen coordinates (x, y).
• The pre-processor HEAT2W has been updated.
• Shorter input format for lists (1-4 instead of 1 2 3 4).

1.3.5 Analysis of window frames
Extensive window frame analysis has been implemented according to the proposed standard prEN ISO 10077-2:1998 draft, Thermal performance of windows, doors and shutters – Calculation of thermal transmittance – Part 2: Numerical method for frames.

1.3.6 Changes to pre-processor HEAT2W
The following updates have been made for HEAT2W version 1.02:
• Maximum number of rectangles is extended from 100 to 250.
• Maximum number of numerical cells is extended from 125 to 250.
• A pasted image will now be saved in the HEAT2W input file (*.H2W). Since it is saved as a bitmap the file size may be very large (more than 1 MB).
• “Frame cavity” is added to the material list.

1.4 About this manual
This manual is divided into two parts. The first part is about the mathematical description (Chapter 2) and the numerical formulation (Chapter 3). The second part deals with input data, the integrated environment, and gives a few examples (Chapter 4 and onwards). It is not necessary to read the first part to use the program.

1.5 System requirements
Windows 95/98/NT is required. A PC with a Pentium processor and 16 MB RAM is recommended.
1.6 Installation

Before using the installation diskette, it is recommended to make a backup copy. To install HEAT2 and HEAT2W run the SETUP.EXE program from Windows. HEAT2 version 4 will be installed in directory HEAT2_40 by default. The following steps describe this process in detail:

1. Start the setup program (SETUP.EXE)
2. Follow the instructions on the screen

The following files will be installed:

- HEAT2.EXE is the main program
- HEAT2W.EXE is a pre-processor that can be used
- HEAT2W.INI is used by HEAT2W
- MTRL40.TXT is a file with thermal properties that may be edited (used by HEAT2)
- Files with extension DAT are HEAT2 input data files
- Files with extension H2W are HEAT2W input data files

1.7 Technical support

News is regularly updated on www.blocon.se. Questions and comments may be sent by email to info@blocon.se.

1.8 Developers

Lund Group for Computational Building Physics, Dept. of Building Physics, Lund University, Sweden.
2. Mathematical description

2.1 Governing differential equations

The governing partial differential heat conduction equation in two dimensions for the temperature $T(x,y,t)$ is

$$\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + I(x,y,t) = C \frac{\partial T}{\partial t} \quad (2.1)$$

Here I, (W/m^3), is the rate of internal heat generation. The thermal conductivities in the x,y-directions are denoted by λ_x and λ_y, (W/(m·K)), respectively. The volumetric heat capacity is denoted by C, ($\text{J/(m}^3\cdot\text{K})$), which is the density ρ, (kg/m^3), times the specific heat capacity c_p, (J/(kg·K)), i.e. $C=\rho c_p$. The thermal conductivities in the two directions are usually the same ($\lambda_x = \lambda_y$). The internal heat generation is often zero. In the steady-state case, the right-hand side of Eq. (2.1) is zero.

2.2 Boundary conditions

There are two main types of boundary conditions that can be applied to the boundary segments ($b.s.$). The first type gives a prescribed temperature of the surrounding region, $T_{b.s.}(t)$, and a given surface resistance R, ($\text{m}^2\cdot\text{K/W}$):

$$T_{b.s.}(t) - T \bigg|_{\text{surf}} = R \cdot (-\lambda) \frac{\partial T}{\partial n} \bigg|_{\text{surf}} \quad (\circ C) \quad (2.2)$$

Here, $\partial T/\partial n$, is the derivative in the normal direction. The second type gives a prescribed heat flow into the region:

$$(-\lambda) \frac{\partial T}{\partial n} \bigg|_{b.s.} = f(t) \quad (\text{W/m}^2) \quad (2.3)$$

Figure 2.1 shows an internal boundary separating two different materials of thermal conductivities λ_1 and λ_2. The temperature is of course continuous at the boundary. The normal to the boundary is denoted by \hat{n}. The heat flow across the boundary is continuous. The condition of continuous heat flow perpendicular to the boundary is

$$\lambda_1 \frac{\partial T}{\partial n} \bigg|_1 = \lambda_2 \frac{\partial T}{\partial n} \bigg|_2 \quad (2.4)$$
There may be a contact resistance R_{ins}, (m²-K/W), between two regions, see Figure 2.2. In this case, the temperature is different on the two sides of the contact resistance. The condition for continuous heat flow at this internal insulation is:

$$\lambda_2 \frac{\partial T}{\partial n} \bigg|_{2} - \lambda_1 \frac{\partial T}{\partial n} \bigg|_{1} = \frac{T_2 - T_1}{R_{ins}}$$

(2.5)

2.3 Initial conditions

The initial temperature distribution at time $t = t_{start}$ is in two dimensions denoted by $T(x, y, t_{start})$. In the steady-state case, the initial temperatures are irrelevant to the solution.

2.4 Fluid regions

Consider Figure 2.3 in which S denotes the boundary surface of an internal region containing a fluid with a volumetric heat capacity C_{fluid}, (J/(m³-K)). The inward normal for the region is denoted by \hat{n}, and the volume of the fluid by V_{fluid}, (m³). The heat flow into the area Q_{in}, (W), is obtained by an integral over the boundary surface S. The flow equals the rate of increase of the heat content in the fluid:

$$Q_{in} = \int -\lambda \frac{\partial T}{\partial n} dS = C_{fluid} \cdot V_{fluid} \frac{\partial T_{fluid}}{\partial t}$$

(W)

(2.6)

In the case involving a cavity filled with air, the heat capacity may be put to zero and the right-hand side of Eq. (2.6) becomes zero.
2.5 Heat conduction coupled to radiation in a cavity

Heat conduction in solid building parts coupled to long-wave thermal radiation in air cavities is a frequently occurring and studied type of process in building physics. The numerical simulation of this coupling poses particular problems. An equation system for the radiative exchange coupled to convective heat transfer in the cavity and heat conduction to the nodes in the numerical mesh must be solved at each time.

A systematic analysis of this problem is presented in (Blomberg, 1996). The number of original \((2N+1)\) equations is reduced as much as possible (to \(N\) equations). The final formulas, and in particular the iterative process to account for the non-linearity due to the forth-power radiation law, are formulated to suit computer modeling.
3. Numerical formulation

3.1 Introduction

In the numerical formulation, the partial differential equation is replaced by a discrete approximation. The temperature field is approximated by values at discrete points. This gives a computational mesh. The field is considered at consecutive time-steps with a time increment Δt. In this study, only Cartesian meshes will be used. The increments in the x-, and y-directions are denoted by Δx_j, and Δy_j, respectively. The smaller these increments are, the better is the agreement with the “true” temperature distribution.

3.2 Computational mesh

Consider a two-dimensional body that is divided into increments in the x- and y-directions as shown in Figure 3.1. This rectangular mesh may have computational cells of different sizes. The width and height of cell (i,j) are denoted by Δx_i and Δy_j, respectively. The temperature in the midpoint of cell (i,j) at the considered time-step is denoted by $T_{i,j}$.

![Figure 3.1: Choice of indices for the cells in the computational mesh.](image)

3.3 Thermal conductances

The thermal coupling between the cells in the numerical mesh is described by thermal conductances. Figure 3.2 shows the notation of indices for the conductances.
The conductance per unit length perpendicular to the (x,y)-plane between the two cells (i-1,j) and (i,j) is denoted by $K_{i-1/2,j}$, (W/(m·K)). It is calculated as

$$K_{i-1/2,j} = \frac{\Delta y_j}{\Delta x_{i-1}/(2 \cdot \lambda_{x,i-1,j}) + \Delta x_i/(2 \cdot \lambda_{x,i,j}) + R_{i-1/2,j}} \text{ (W/(m·K))} \quad (3.1)$$

Here $\lambda_{x,i,j}$ is the thermal conductivity in the x-direction for cell (i,j). The conductance refers to the total heat flow through the side Δy_j per unit length. The first term in the denominator is the thermal resistance in the x-direction for half of the cell (i-1,j), the second term being the resistance for half of the cell (i,j). The third term $R_{i-1/2,j}$, (m²·K/W), is an optional additional thermal resistance at the interface between the two cells (i-1,j) and (i,j) as shown in Figure 3.3. For the cell (1,j) lying at the boundary as shown in Figure 3.5, the conductance $K_{1/2,j}$ is calculated as

$$K_{1/2,j} = \frac{\Delta y_j}{\Delta x_i/(2 \cdot \lambda_{x,i,j}) + R_{1/2,j}} \quad (3.2)$$

Here $R_{1/2,j}$, (m²·K/W), is the boundary surface resistance.
3.4 Heat flows

Figure 3.4 shows the four heat flows associated with an internal cell.

The heat flow through the left boundary $Q_{i-1/2,j}$, (W/m), is

$$Q_{i-1/2,j} = K_{i-1/2,j} \cdot (T_{i-1,j} - T_{i,j}) \quad \text{(W/m)} \quad (3.3)$$

The heat flow through the lower boundary $Q_{i,j-1/2}$ is

$$Q_{i,j-1/2} = K_{i,j-1/2} \cdot (T_{i,j-1} - T_{i,j}) \quad \text{(W/m)} \quad (3.4)$$

The heat flow through a boundary cell is determined by the boundary condition. Consider, for example, the outer boundary cell $(1,j)$ in Figure 3.5. If a temperature is given, Eq. (3.3) is modified to

$$Q_{1/2,j} = K_{1/2,j} \cdot (T_{b,z} (t) - T_{1,j}) \quad \text{(W/m)} \quad (3.5)$$

If a boundary heat flow $q_{b,z}$ (W/m²), is given, the heat flow per unit length perpendicular to the (x,y)-plane is

$$Q_{1/2,j} = q_{b,z} \cdot \Delta y_j \quad \text{(W/m)} \quad (3.6)$$
The accumulated heat flow during a time-step Δt for the left boundary segment to which cell (i,j) belongs is

$$E_{b,x}^{new} = E_{b,x} + \Delta t \cdot \sum_j Q_{1/2,j} \quad (J/m) \quad (3.7)$$

where the summation involves all cells that belong to the boundary segment.

3.5 New temperatures

The heat capacity of cell (i,j) becomes $C_{i,j} \Delta x_i \Delta y_j$ per unit length perpendicular to the (x,y)-plane. Here $C_{i,j}$, $(J/(m^3 \cdot K))$, is the volumetric heat capacity for cell (i,j).

The increase of the energy for an internal cell during time-step Δt is given by the energy balance below. In the formula, $T_{i,j}$ is the old temperature of cell (i,j), and $T_{i,j}^{new}$ the new one. The development in time is incremented by Δt, and the new time becomes $t^{new} = t + \Delta t$. The heat generation in cell (i,j) is denoted by $I_{i,j}$, (W/m^3). A negative value indicates a heat sink. The heat generation is often zero.

$$C_{i,j} \Delta x_i \Delta y_j \cdot (T_{i,j}^{new} - T_{i,j}) = (Q_{i-1/2,j} - Q_{i+1/2,j} + Q_{i,j-1/2} - Q_{i,j+1/2} + I_{i,j} \Delta x_i \Delta y_j) \cdot \Delta t \quad (3.8)$$

The final equation for the new temperature becomes

$$T_{i,j}^{new} = T_{i,j} + \frac{\Delta t}{C_{i,j} \Delta x_i \Delta y_j} (Q_{i-1/2,j} - Q_{i+1/2,j} + Q_{i,j-1/2} - Q_{i,j+1/2} + I_{i,j} \Delta x_i \Delta y_j) \quad (3.9)$$

3.6 Choice of time-step

The stable time-step Δt for cell (i,j) is determined from the following stability criterion:

$$\Delta t < \frac{C_{i,j} \Delta x_i \Delta y_j}{K_{i-1/2,j} + K_{i+1/2,j} + K_{i,j-1/2} + K_{i,j+1/2}} \quad \text{for all } i \text{ and } j \quad (3.10)$$

This criterion must be satisfied for all cells (i,j). The smallest stable time-step obtained is used for all cells to guarantee stability. The analysis leading to this criterion is not given here. The reader is referred to (Efring, 1990).

3.7 Iterative calculation

Equation (3.9) gives the new temperature based on the change in energy during the time-step Δt. This calculation is made for all cells. The updated temperatures give the new heat flows between the cells according to Eqs (3.3)-(3.6), which in turn change the temperatures again, and so on.

3.8 Steady-state case

Transient problems are solved with the above method of explicit forward differences. This means that the old temperatures are used to calculate the heat flows. The new temperatures $T_{i,j}^{new}$ are calculated by Eq. (3.9).

The successive over-relaxation method is used in the steady-state case, see (Hirsch, 1992). Here, the temperatures are calculated in the same way as with explicit forward difference, but new temperatures are used in the formulas as they arise. The temperatures are calculated using an over-relaxation factor ω that
lies in the range 1.0-2.0. An optimized \(\omega \) may give calculation times between 1/50th and 1/10th of that required for a calculation not using over-relaxation (\(\omega = 1.0 \)). The optimized \(\omega \) typically lies in the range 1.8-2. In HEAT2 (and in HEAT2R and HEAT3) this factor is initially set to 1.95. Equation (3.9) is modified to

\[
T_{i,j}^{\text{new}} = T_{i,j} + \frac{\Delta t \cdot \omega}{C_{i,j} \Delta x_i \Delta y_j} (Q_{i-1/2,j} - Q_{i+1/2,j} + Q_{i,j-1/2} - Q_{i,j+1/2} + I_{i,j} \Delta x_i \Delta y_j) \tag{3.11}
\]

The heat capacities of the cells do not matter in the steady-state solution. The stable time-step for each cell determines the time-scale for temperature changes within the cell. It is better if all cells have the same stable time-step, which means the thermal response time for each cell is the same. Accordingly, the heat capacities \(C_{i,j} \) are chosen to give the same time-step for all cells. The heat capacities are determined by putting \(\Delta t \) equal to the right-hand side in (3.10). The chosen capacities are then

\[
C_{i,j} = \Delta t \cdot \frac{K_{i-1/2,j} + K_{i+1/2,j} + K_{i,j-1/2} + K_{i,j+1/2}}{\Delta x_i \Delta y_j} \tag{3.12}
\]

Actually, the choice of \(\Delta t \) does not matter since it cancels in Eq. (3.11).

3.9 Internal regions containing fluid

In some cases there is a need to model an internal area containing liquid fluid or air. An example of this is rock cavities with water used for heat storage.

Two cases are considered when modeling an internal region with a fluid: the fluid has heat capacity, or the fluid has negligible heat capacity.

For the given fluid volume \(V_{\text{fluid}} \) with the volumetric heat capacity \(C_{\text{fluid}} \), the temperature of the fluid \(T_{\text{fluid}} \) is calculated from the energy balance involving the surrounding cells. Equation (2.6) becomes in a discrete approximation:

\[
C_{\text{fluid}} \cdot V_{\text{fluid}} \cdot (T_{\text{fluid}}^{\text{new}} - T_{\text{fluid}}) = \sum_{n=1}^{N} K_n \cdot (T_n - T_{\text{fluid}}) \cdot \Delta t \tag{3.13}
\]

The temperatures in the cells adjacent to the fluid region are denoted by \(T_n \). The thermal conductance between the center of the cell in question and the fluid is denoted by \(K_n \). The total number of cells, \(N \), enclosing the fluid volume is taken into account in calculating the new fluid temperature, \(T_{\text{fluid}}^{\text{new}} \).

Air may be approximated as a fluid with negligible heat capacity. The air temperature \(T_a \) inside an internal region becomes an average of the temperatures in the surrounding cells:

\[
T_a = \frac{\sum_{n=1}^{N} (K_n \cdot T_n)}{\sum_{n=1}^{N} K_n} \tag{3.14}
\]
4. Overview of input

4.1 Input mesh

An input mesh facilitates the description of the geometry, the numerical mesh, and the boundary conditions. Consider first as a rather simple example the L-shaped region in Figure 4.1. The required input mesh is shown. Here, \(I,J \) are the input mesh coordinates. The mesh segment \(I \) between the mesh coordinates \(I-1 \) and \(I \) has the length \(\Delta X_I \). The segment \(J \) between coordinates \(J-1 \) and \(J \) has the length \(\Delta Y_J \). The number of input mesh segments, \(I_{\text{max}} \) and \(J_{\text{max}} \), respectively, is given in each direction. In Figure 4.1 there are two in both directions.

![Figure 4.1: An simple example with a suitable input mesh.](image)

The computational region is enclosed by a number of straight lines, which are called boundary segments. The boundary segments are defined consecutively counterclockwise using the input mesh coordinates. The boundary segments will be numbered in the order that they are given. It makes no difference which one of the boundaries that is taken first. Starting at \((0,0) \), it would be \((I,J) = (0,0), (1,0), (1,1), (2,1), (2,2), (0,2), \) and back to \((0,0) \), see Figure 4.2. Figure 4.3 shows the boundary segments 1 to 6.

![Figure 4.2: The number of mesh coordinates in each direction and the number of boundary segment have to be given first (left figure). The computational area is then defined by enumerating the boundary segments consecutively counterclockwise using the input mesh coordinates (right figure).](image)
4.2 Numerical mesh

The lengths ΔX_I and ΔY_J, and the number of computational cells N_I and N_J are specified for each mesh segment, see Figure 4.4. The cells are normally placed in an equidistant mesh. The computational cells in each segment have the same size, see Figure 4.5. In general, capital letters refer to the input mesh (e.g. ΔX_I), while small letters refer to the numerical mesh (e.g. Δx_i). There must be at least one numerical cell in each input mesh segment. In Figure 4.5 there are 10 cells in both segments in the x-direction. In the y-direction, there are 15 cells in the first segment, and 10 cells in the second one. The length of each segment is also shown in the figure.

\[
\Delta X_I
\]

\[
\frac{\Delta x_i}{\Delta X_I} = \frac{N_I}{\Delta X_I}
\]

Figure 4.4: The length Δx_i in the computational mesh.
Figure 4.5: A numerical mesh is shown here with 20-25 cells (equidistant in each mesh segment).

Expansive meshes may be used to concentrate the cells towards areas with large temperature gradients. An expansion coefficient is given for each mesh segment. The lengths of the successive computational cells in each segment will be increasing or decreasing by this factor. For example, if the length in a segment with three cells is 21 m, the length of each computational cell will be 7 m in an equidistant mesh (the expansion coefficient is 1). A coefficient of 2.0 will give lengths of 3.0, 6.0 and 12.0 m. Using 0.5 will give a decreasing mesh with 12.0, 6.0 and 3.0 m, respectively.

Be aware that an expansive mesh may lead to small computational cells causing the time-step to be very short. A badly chosen computational mesh can increase the computational time dramatically, especially for transient analyses. Do not use extreme expansion coefficients with a large number of cells that would cause very small cells in a segment. “Normal” values are in most cases those between 0.8 and 1.25.

Figure 4.6 shows an expansive mesh. The first segment in the x-direction has an expansion coefficient of 0.9, i.e. the cell sizes are decreasing in the x-direction. The coefficient is 1.2 in the second segment yielding increasing sizes. The expansion in the y-direction is 0.95 and 1.2, respectively. A proper mesh can usually be obtained by trying a few different expansion factors and visually checking the generated mesh grid.
Figure 4.6: An expansive mesh with smaller cells near the inner corner (the temperature gradient is higher in the corner requiring smaller cells to decrease the numerical error).

4.2.1 Simple mesh generation

Figure 4.7 (left) shows the dialogue box for the mesh in x-direction. The buttons with + and – signs will double or half the number of cells in all mesh segments. The Spread button will distribute the cells evenly as far as possible in an equidistant numerical mesh. The total length is also shown ($L_x=0.7$).

Figure 4.7: A simple equidistant mesh generated.
4.3 Thermal properties

The thermal properties are defined by the thermal conductance \(\lambda \), (W/(m⋅K)), and the volumetric heat capacity \(C \), (J/(m³⋅K)), which is the density times the specific heat capacity \(C = \rho \cdot cp \). The thermal conductivity may differ in the \(x \)- and \(y \)-directions \((\lambda_x, \lambda_y) \).

The thermal properties are specified in the following way. Default thermal properties are first given \((\lambda_x, \lambda_y, C) \) that will be valid for the whole region. Then, rectangular regions with other thermal properties are defined by the lower left and upper right input mesh coordinates. The rectangles may overlap each other (the data for the overlapping rectangle will prevail).

Consider the problem in Figure 4.8 where two materials are specified. The green (upper right) area shows a rectangle with lower left coordinate \((1,1)\) and upper right coordinate \((2,2)\).

![Thermal properties table](image)

Figure 4.8: The materials are defined by giving default thermal properties that are valid for the whole computational area, and then using overlapping rectangles of different properties. The green (upper right) area shows a rectangle with lower left coordinate \((1,1)\) and upper right coordinate \((2,2)\).

4.4 Boundary conditions

Different types of boundary conditions may be defined. A boundary condition type may either be a temperature \(T \), (°C), with a surface resistance \(R \), (m²⋅K/W), between the air and the surface or a given heat flow \(q \), (W/m²). The temperatures and the heat flows may be constant in time, or time-dependent using a sinusoidal, a step-wise constant, or a step-wise linear function. See definitions in Section 5.7.

The user defines the boundary conditions in a list and assigns them to the boundary segments. Consider Figure 4.9. There are in this case three boundary conditions with list numbers \(n = 1, 2, \) and \(3 \) in the first column. The second column shows what boundary segments that are assigned to a certain type (the
boundary segment numbers 1 to 6 are shown outside the computational area in the figure). By default, all boundary segments will use the first type. Boundary segments 2 and 3 are assigned boundary condition type 2 \((T=20, R=0.13)\). Boundary segments 5 and 6 are assigned type 3 \((T=0, R=0.04)\). All other boundary segments (in this case 1 and 4) will have the default first type, i.e. an adiabatic boundary condition \((Q=0)\).

If a boundary segment number appears in more than one type list, the latter will prevail. The boundary conditions may also be shown graphically, see Figure 4.10.

![Figure 4.9: The boundary conditions are assigned to the corresponding boundary segments numbers 1 to 6.](image)
Figure 4.10: The boundary conditions may also be shown graphically by enabling item *Bounds/BC type values*.

A shorter input format for lists with consecutively enumerated items is available. Figure 4.11 shows the boundary conditions dialogue for the slab problem (see input file slab1.dat). The four boundaries in the second row may be given as the string “6-9” instead of the string of “6 7 8 9”.

![Boundary conditions](image)

Figure 4.11: The consecutive boundaries in the second row may be given as the string “6-9” instead of the string of “6 7 8 9”.

4.5 Initial temperatures

The initial temperatures are given in a similar way as the thermal properties. A default temperature is first given that will be valid for the whole region. Overlapping rectangular regions with other temperatures are defined by the lower left and upper right input mesh coordinates (the data for the overlapping rectangle will prevail).

Consider Figure 4.12. In this case, two different temperatures are used. The default (basic) temperature 20 °C is first assigned the whole area. Secondly, a rectangle defining a temperature of 10 °C for the upper (green) part is given.
4.6 Solving the steady-state problem

To start a steady-state simulation select Solve/Start steady-state calculation. A window, see Figure 4.13, will be displayed showing information such as the chosen stop criterion, number of iterations, and errors for temperature and flow, respectively. Figure 4.14 shows the calculated temperature field and isotherms. The heat flows may be viewed by checking Bounds/Heat flows in the graphics window. A list is shown in Figure 4.15 (Output/Boundary flows).

Figure 4.13: Window shown during steady-state calculation.
4.7 Solving a transient problem

In the following example, a transient calculation using a sinusoidal variation on the external side of the corner will be carried out for the above described corner problem. First, define a sinus function (item Functions/Function 1) with a daily variation between 0 and 20 °C with maximum at noon, see Figure 4.16.
Figure 4.16: A sinus function with a daily variation between 0 and 20 °C with maximum occurring at noon. The time for the phase and period may be given either in seconds or a time string.

Next step is to couple the function to a boundary condition type (Input/Boundary conditions), see Figure 4.17. Finally, the stop time 4 days (Solve/Options for transient) is given, see Figure 4.18.

Figure 4.17: A temperature function is chosen in the pick list for the boundary condition type. The function number is selected in the function pick list (number 1 is default).

Figure 4.18: The stop time is 4 days.
In this example we will also look at the flows through the internal boundaries during each hour. Enable the record (Output/Recorder) and pick the second item in the list as in Figure 4.19 (top). Give the numbers 2 and 3 for the internal boundaries as in Figure 4.19 (bottom). This will record the sum of the two boundary heat flows at each screen update (Solve/Update) as given in Figure 4.20, in this case every hour. Press the item Graphics in the record window to bring up a chart window (this will be empty since no data are yet recorded).

Figure 4.19: Flows and temperatures may be saved to a list during the simulation. In this case the sum of the heat flows through boundaries 2 and 3 will be recorded.

Figure 4.20: The time interval for recorded data is given in item Solve/Update.

Start the transient simulation by selecting Solve/Start transient calculation. Consider Figure 4.21. A window (top left) will be displayed showing information such as the chosen stop criterion, number of iterations, and error for temperature and flow. The record window (bottom left) and the chart window (bottom right) show the internal heat flows during each hour.

Note the large heat flow during the first hours at boundary 3 due to the initial temperature (10 °C) as given in Figure 4.12.
Figure 4.21: The solve window (top left) shows chosen stop criterion, number of iterations, and error for temperature and flow. The record window (bottom left) and the chart window (bottom right) show the internal heat flows during each hour.
Figure 4.22: The maximum heat flow through the internal boundaries into the wall occurs at six-o-clock in the morning and the minimum at six-o-clock in the afternoon.

4.8 Internal modifications

Internal modifications may be used, such as regions with heat sources (constant or time-dependent), given temperatures (constant or time-dependent), air holes, fluid with capacity, and radiation inside cavities that may be ventilated (see Chapter 10). Approximated circular pipes with a given heat source or temperature (constant or time-dependent) may be used, see Chapter 7. Figure 4.23 shows a calculation for stairs heated by pipes with a temperature of 30 °C. The external temperature is -15 °C. The color for \(T=0 \) is disabled here, see scale to the right. Even though the stairs are heated by pipes, the edge of each step will still be below zero and can be slippery.

Figure 4.23(col): Stairs heated by pipes with a temperature of 30 °C. The external temperature is -15 °C. The color for \(T=0 \) is disabled, see scale to the right, which here means that temperatures between –1 and +1 is not drawn, see the white band near the edge. The edge of each step is below zero and can be slippery.

(col) See Appendix D for color image
The internal modifications are placed as rectangular regions using the lower left and upper right input mesh coordinates. They must be placed according to some specific rules, see Figure 4.24. There must also be at least one numerical cell between the areas (e.g. between area 2 and 3). There must be at least one cell between an area and a boundary (e.g. areas 3 and 4). Two areas may meet at corners (areas 1 and 2). The above rules apply to all kinds of areas with an internal modification, such as areas with a given temperature, heat source, and so on. HEAT2 automatically checks that the given regions are consistent.

Figure 4.24: An example of how four internal modifications may be placed.

4.9 Internal resistances

Internal resistances R, (m2K/W), may be given by specifying lines, perpendicular to the actual resistances, either in the x-direction or in the y-direction. Consider Figure 4.25. The vertical line located between the input mesh points $(1,1)$ and $(1,4)$ implies a resistance R_x in the x-direction.

4.10 Summary

A suitable input mesh has to be defined taking the geometry, materials, initial temperatures, boundary segments with different boundary conditions, internal modifications, internal resistances and numerical mesh into account.

Consider Figure 4.25. The region contains two materials A and B. A suitable input mesh generation has been made. There are five segments in both directions. The region A has the input mesh coordinates lower left 0,2 and upper right 5,5. The rectangle defined by the lower left coordinate 3,3 and the upper right coordinate 4,4 marks material B. The material B is also defined with the rectangle coordinates 0,0 and 2,2. A resistance R_x in the x-direction is located between the input mesh coordinates 1,1 and 1,4.

It makes no difference which one of the boundaries that is given first, but the enumeration must be done counterclockwise. Consider Figure 4.25. Here, the boundary between 0,0 and 2,0 is chosen as the first one, hence the boundary between 5,5 and 0,5 becomes number 5. The boundaries of the computational region will here be given as 0,0 2,0 2,2 5,2 5,5 0,5 0,0. The lengths in the x-direction and y-direction are: 0.2 0.3 0.1 0.3 0.1 and 0.2 0.3 0.2 0.1 0.2
Figure 4.25: A suitable input mesh has to be defined taking the geometry, materials, initial temperatures, boundary segments with different boundary conditions, internal modifications, internal resistances, and numerical mesh into account. As an example, the mesh point 4 in the y-direction is used to describe the end-point for the resistance R_x, and the upper boundary for the smaller rectangle with material B.
5. Working with HEAT2

5.1 Loading and saving input data

The data file (*.DAT) contains the input data for a problem.

The PSE file contains input data, the temperature field and, if solving a transient problem, the accumulated boundary heat flows and the point of time when the simulation was interrupted. This makes it possible to stop a simulation (steady-state or transient) and quit HEAT2, and later restart and continue the simulation from where it was interrupted. To do this, save a PSE file (PSE is short for pause) for the problem before quitting HEAT2. When restarting HEAT2 later, open the PSE file and continue the simulation.

5.2 Inserting mesh coordinates

Suppose that we wish to add an area somewhere in an already defined problem. New mesh coordinates must probably be defined. It is likely that many of the already defined areas, boundary conditions, resistances and heat sources, and so on, have to be redefined in the new coordinates.

Input mesh coordinates may be inserted automatically (Edit/Insert mesh coordinate, see Figure 5.1). The new coordinate will be inserted in the middle of the old segment, which will be divided into two new segments (each with half the length of the old one). The number of cells in each of the two new segments will be the number of cells in the old one divided by two. If the number of cells in the old segment is odd, the number will be one even and one odd, e.g. seven cells will split into 3 and 4 cells. When a coordinate is inserted, the only thing the user probably has to change is the lengths, the number of cells for the new segments and the expansion coefficients.

Note that there is no undo command available (it may be wise to save the data before this operation is done so that it can be restored if it did not turn out the way it was suppose to be). Neither can mesh points be removed.

![Figure 5.1: Menu for inserting mesh coordinates.](image)

Consider Figure 5.2. The top figures show the originally described problem. The bottom figures show the coordinates when insertion is made in the x-direction before mesh point 1.
Figure 5.2: A mesh point has been inserted in the bottom figures in the x-direction before mesh point 1.

Suppose that we want two different boundary conditions at the upper boundary ($y=0.8$) at $0 \leq x < 1$ and $1 \leq x < 1.5$. In case that a proper input mesh was not initially made, the existing mesh has to be redefined. A new mesh point is inserted in the x-direction before mesh point 3, see Figure 5.3.

Figure 5.3: New mesh point inserted in the x-direction before mesh point 3.
Change the number of boundaries (Input/Input mesh) from 6 to 7 as in Figure 5.4 (top). Change the description of boundaries for boundaries 6 and 7 as in Figure 5.4 (bottom). There are now four segments in the x-direction, and seven boundary segments (delimited by small circles), see Figure 5.5. Segments 5 and 6 can now be assigned different boundary conditions.

Figure 5.4: The number of boundaries is changed from 6 to 7. New descriptions of boundaries 6 and 7 are made.

Figure 5.5: Segments 5 and 6 can now be assigned different boundary conditions.

5.3 Thermal properties

Figure 5.6 shows the window for thermal properties. See Section 4.3 for more information. The basic thermal properties, λ_x, λ_y and C will be valid for the whole area. Areas defined in a list will overlap the region with new materials (the data for the overlapping rectangle will prevail).
An optional material name can be given. This name will be saved to the input data file. There is no direct connection between the name and the thermal properties. They can be edited separately. The name will be displayed on the thermal property scale in the graphic window.

It is possible to pick a material from the material list that may be edited (MTRL40.TXT), see Appendix B. When a material is picked, the name and the thermal properties will be loaded for the current area.

The volumetric heat capacity is denoted by C (J/(m³·K)), which is the density ρ (kg/m³), times the specific heat capacity c_p (J/(kg·K)), i.e. $C=\rho c_p$. Note that C is given in the unit (MY/(m³·K)), that is $1.0 \cdot 10^6$ J/(m³·K). The default value of C is 1.0 MY/(m³·K). For the steady-state simulation the value of C is neglected.

The thermal conductivity in the y-direction will be set equal to the one in the x-direction when the value in the x-direction is given if the upper right check box in Figure 5.7 is checked (this is default). Most materials are isotropic. Wood may be one exception.

5.4 Boundary conditions

A boundary condition type may either be a temperature T, (°C), with a surface resistance R, (m²·K/W), or a given heat flow Q, (W/m²). The temperatures and the heat flows may be constant in time, or time-
dependent using a sinusoidal, a step-wise constant, or a step-wise linear function. See definition in Section 5.7.

The user defines the boundary conditions in a list and assigns them to the boundary segments. Consider Figure 5.8. There are in this case four boundary conditions with list numbers \(n = 1-4 \) in the first column. The second column shows boundary segments assigned to a certain type. By default, all boundary segments that is not defined here will use the first type.

The third column links to a function (sinusoidal, stepwise constant or step-wise linear). The type may be either a function for temperature or heat flow.

The last column gives the surface thermal resistance (applies to a type with temperature).

![Figure 5.8: The boundary types are linked to each boundary segment.](image)

5.5 Initial temperatures

See Section 4.5. In order to initialize the temperatures use *Solve/Reset Temperatures* or click on the *update graphics* button, see Figure 5.9.

![Figure 5.9: Initial temperatures.](image)

5.6 Internal modifications

5.6.1 Introduction

Internal modifications may be used for simulating problems with e.g. floor heating, cavities with fluids, radiation inside cavities, etc. Figure 5.10 shows an example of a quadrate with 85 heat sources of 1 W/m placed in a checkerboard pattern. Each square is 4.4 mm².
5.6.2 Defining internal modifications types

Figure 5.11 shows the input window for the internal modification types. Each type is picked from a list and the data are given in the column “Data”. If a modification depends on a function, the function is chosen in the last column. Table 5.1 shows the input data for the available modifications.

Figure 5.10: Quadrate with 85 heat sources of 1 W/m placed in a checkerboard pattern. The boundary surface temperature is \(T=0 \). The left figure shows heat flow intensity. The heat flow is zero in the middle. The right figure shows temperatures, isotherms and heat flow arrays.

col See Appendix D for color image
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Constant heat source, (W/m)</td>
</tr>
<tr>
<td>B</td>
<td>Heat source that varies in time (a link is made to a pre-defined function)</td>
</tr>
<tr>
<td>C</td>
<td>Constant temperature</td>
</tr>
<tr>
<td>D</td>
<td>Temperature that varies in time (a link is made to a pre-defined function)</td>
</tr>
<tr>
<td>E</td>
<td>Air hole, see Sections 2.4 and 3.9. Input is the surface resistance, R, (m²·K/W).</td>
</tr>
<tr>
<td>F</td>
<td>Hole with a fluid with capacity, input is the surface heat transfer coefficient α, (W/(m²·K)), the fluid’s volumetric capacity C, (MJ/(m³·K)), and the initial temperature of the fluid, T_0, (°C).</td>
</tr>
<tr>
<td>G</td>
<td>Radiation inside cavities which may be ventilated. Input are emissivity ε and the convective surface heat transfer coefficient α at the four sides. The cavity may be ventilated with a constant inlet temperature T_v at the ventilation rate n (h⁻¹). In most cases the cavity is unventilated ($n=0$). The gas in the cavity has the volumetric heat capacity $C=\rho c_p$, (kJ/(m³·K)). The default value of $C=1.239$ kJ/(m³·K) is for air in room temperature. The temperatures are linearized around a suitable temperature level \bar{T}_{int}, see Chapter 10.</td>
</tr>
<tr>
<td>H</td>
<td>Approximated circle with constant heat source (pipe), see Chapter 7.</td>
</tr>
<tr>
<td>I</td>
<td>Approximated circle with non-constant heat source (pipe), see Chapter 7.</td>
</tr>
<tr>
<td>J</td>
<td>Approximated circle with constant temperature (pipe), see Chapter 7.</td>
</tr>
<tr>
<td>K</td>
<td>Approximated circle with non-constant temperature (pipe), see Chapter 7.</td>
</tr>
</tbody>
</table>

Table 5.1: Available internal modifications.

The data entry for all constant modifications is shown below. In the non-constant cases, a link to a function is made.

A: Heat source constant

C: Temperature constant

E: Air hole
Note on hole with air, radiation and ventilation (type G)

The internal modification with radiation in a cavity may be ventilated at a given rate with a constant temperature.

The ventilation temperature may also be a function chosen from the function list. An example of this may be a room ventilated with an outdoor temperature that varies sinusoidally.

The cavity may also be ventilated with a current calculated temperature at an arbitrary point \((x,y)\). The point must be located within the computational area. It could e.g. be inside another cavity. Note that heat is not extracted/inserted at the specified point. It is only a prescribed ventilation temperature for the ventilated cavity.

The order of approximation for the radiation calculation may be given here, see Chapter 10. A value of 1 specifies a linear approximation (default value). The calculation will take a little bit longer time with a higher order of approximation. For most cases the linear approximation is sufficient (i.e. the same results are obtained regardless of degree of approximation).
5.6.3 Defining areas

Figure 5.12 shows the entry for the areas with internal modifications. The lower left and upper right input mesh coordinates are given for each area. The corresponding type is chosen from a pick list. Notice that an internal area must not be adjacent to an outer boundary, nor to another internal area.

5.7 Functions

Functions may be used to describe changes of temperatures or heat flows in time for boundary conditions. Functions may also apply to internal modifications, such as heat sources and areas with given temperatures. Three independent functions can be used in each problem. The following functions are available:

- \(f(t) = f_1 + f_2 \cdot \sin \left(\frac{2\pi(t - t_0)}{t_p} \right) \quad t_p > 0 \)
 \((\text{sinusoidal}) \)

- \(f(t) = \begin{cases}
0 & t < t_1 \\
 f_1 & t_1 \leq t < t_2 \\
 f_2 & t_2 \leq t < t_3 \\
 \vdots \\
 f_n & t_n \leq t
\end{cases} \quad (\text{step-wise constant}) \)
\[
\begin{align*}
 f(t) &= \begin{cases}
 f_1 \cdot t & t < t_1 \\
 f_1 + (f_2 - f_1) \cdot \frac{(t-t_1)}{(t_2-t_1)} & t_1 \leq t < t_2 \\
 f_2 + (f_3 - f_2) \cdot \frac{(t-t_2)}{(t_3-t_2)} & t_2 \leq t < t_3 \\
 \vdots \\
 f_n & t \leq t_n
 \end{cases} \quad (\text{step-wise linear})
\end{align*}
\]

5.7.1 Sinusoidal function

Figure 5.13 shows the entry for the sinusoidal function. Input is average \(f_1 \), amplitude \(f_2 \), phase time \(t_0 \) and period time \(t_p \). The phase and period time is given in seconds or with a time-string.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{function.png}
\caption{Function 1}
\end{figure}

Figure 5.13: Functions are given in item \textit{Solve/Function}.

The time-string is a sequence of pairs with a number and one of the following letters:

- \(y \) year (365 days, 31536000 seconds)
- \(q \) month (year/12, 30.417 days, 2628000 seconds)
- \(d \) day (86400 seconds)
- \(h \) hour (3600 seconds)
- \(m \) minute (60 seconds)
- \(s \) second (can be omitted)

Please note that \(m \) is minute and \(q \) is month. Here are some examples:

- 1y14h 1 year and 14 hours
- 14q3d15 1 year, 2 months, 3 days and 15 seconds (same as 1y2q3d15)
- 86400 1 day
- 1h2d Not valid. The expression must be in descending order, see next row.
- 2d1h This string is OK, meaning 2 days and 1 hour
5.7.2 Step-wise constant and step-wise linear function

The step-wise constant and step-wise linear values are given in an editor, see Figure 5.14. Each row should contain the time (in seconds or using a time-string) and the function value. Comments may be written after the data on each row or after a ‘%’, see Figure 5.14 (right).

The data will be validated if the Validate menu item is pressed (or when a simulation is started). The right figure shows an error on the third row, see message at the bottom. The function values for the data given in the left figure are shown in Figure 5.18 and Figure 5.19. The maximum number or values is constrained by the 16 MB of text that the editor can hold. Using e.g. 16 characters per row would give a maximum number of one million function values.

The function values may be generated in other programs and pasted into the function editor. Figure 5.15 shows the function \(\ln(x) \) created in Microsoft Excel for a few values that have been pasted into the function editor. The data for the function steps may be saved (*.FUN) and later be used by other problems in HEAT2 and HEAT3.

During the simulation, the function value will be shown in the simulation window. Note that it is possible to open function values (*.FUN) in the record list and graphically see the variation as stepwise-linear values, see Section 5.13.

5.7.3 Example 1 - sinusoidal function with a time period of one year

Figure 5.16 shows a sinusoidal function with the average value 8 °C, the amplitude 15 °C, the time phase three months (-3q), and the time period one year (1y). With this time phase (-3q or +9q), the coolest
temperature (-7 °C) will occur after 0, 12, ..., 12n (0 ≤ n ≤ ∞) months, i.e. on the 1:st of January every year. The warmest temperature (23 °C) will occur after 6, 18, ..., months, i.e. on the 1:st of July every year\(^1\).

5.7.4 Example 2 - sinusoidal function with a time period of one day

Figure 5.17 shows a sinusoidal function with the average value 8 °C, the amplitude 15 °C, the time phase six hours (-6h), and the time period one day (1d). With this time phase (-6h or +18h), the coolest temperature (-7 °C) will occur every day at midnight, and the warmest temperature (23 °C) will occur at noon.

\[
f(t) = 8 + 15 \cdot \sin \left(\frac{2\pi(t-3q)}{1y} \right)
\]

Figure 5.16: Sinusoidal function with \(f_1=8, f_2=15, t_o=3q, \) and \(t_p=1y. \)

\[
f(t) = 8 + 15 \cdot \sin \left(\frac{2\pi(t-6h)}{1d} \right)
\]

Figure 5.17: Sinusoidal function with \(f_1=8, f_2=15, t_o=6h, \) and \(t_p=1d. \)

\(^1\) Using time phase \(-4q\) instead will give min and max at Feb 1 and Aug 1, respectively.
5.7.5 Example 3 - step-wise constant function

Figure 5.18 shows a step-wise constant function with four steps using the data as given to the right. Note that the value of the function is zero before the first defined step. If $t_1=0$, instead of $t_1=2h$, the first value f_1 will be used from start. Also note that the function value for the last step will sustain after this point of time.

![Graph of a step-wise constant function](image)

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>f (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 = 2h$</td>
<td>$f_1 = 2 , ^\circ C$</td>
</tr>
<tr>
<td>$t_2 = 4h$</td>
<td>$f_2 = 6 , ^\circ C$</td>
</tr>
<tr>
<td>$t_3 = 5h$</td>
<td>$f_3 = -4 , ^\circ C$</td>
</tr>
<tr>
<td>$t_4 = 6h$</td>
<td>$f_4 = 4 , ^\circ C$</td>
</tr>
</tbody>
</table>

Figure 5.18: Step-wise constant function for the four steps given to the right.

5.7.6 Example 4 - step-wise linear function

Figure 5.19 shows the step-wise linear function for the four steps. Note that the function value is zero for $t=0$ (may be changed by giving a function value for $t_1=0$). The function value for the last step will be sustained.

![Graph of a step-wise linear function](image)

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>f (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 = 2h$</td>
<td>$f_1 = 2 , ^\circ C$</td>
</tr>
<tr>
<td>$t_2 = 4h$</td>
<td>$f_2 = 6 , ^\circ C$</td>
</tr>
<tr>
<td>$t_3 = 5h$</td>
<td>$f_3 = -4 , ^\circ C$</td>
</tr>
<tr>
<td>$t_4 = 6h$</td>
<td>$f_4 = 4 , ^\circ C$</td>
</tr>
</tbody>
</table>

Figure 5.19: Step-wise linear function for the four steps given to the right.

5.8 Internal resistances

Figure 5.20 shows the input window for internal resistances. It is allowed to give a boundary resistance as an internal resistance line. Note however that this value will be added to the boundary resistance if this is given in a boundary condition.
Figure 5.20: A vertical internal resistance of 10 m²·K/W has been inserted at the horizontal line defined by lower left (0,1) and upper right (1,1). The calculated temperature field is shown to the left.

5.9 Solving the problem

5.9.1 Steady-state stop criteria

There are three ways to give a stop criterion for a steady-state simulation, see Figure 5.21. The first way considers flows. The sum of all heat flows (positive and negative) entering the boundary surfaces Q_b, divided by the sum of the absolute values of all these heat flows, must be less than a given value F, see Eq. (5.1). This value is recommended in the European Standards to be 0.001 (CEN, 1995). The heat flow due to internal modifications, such as heat sources, will also be accounted for when F is calculated.

$$\sum \frac{Q_b}{|Q_b|} \leq F \quad (5.1)$$

The second possibility concerns temperatures. The calculation is interrupted when the relative difference of the cell temperature of two succeeding iterations, valid for the whole computational area, is less than this value R, see Eq. (6.2).
\[
1 - \frac{T_{i,j,k} - T_{i,j,k}^{new}}{T_{i,j,k}} \leq R
\] \hspace{1cm} (5.2)

Smaller values of \(F\) and \(R\) give in general smaller numerical errors, but longer computational run-time. It is normally sufficient to put \(F\) to values between \(10^{-5}\) and \(10^{-3}\). The default value is \(10^{-4}\) (0.01%).

In some cases, the criteria \(R\) and \(F\) can be "accidentally" fulfilled during the convergence of the numerical solution. This is avoided by letting the criterion be valid at 30 consecutive time-steps before the simulation stops.

The third way is simply to give a maximum number of iterations.

5.9.2 Successive over-relaxation used in the steady-state calculations

Different numerical techniques can be used to decrease the CPU-time in the steady-state case. One example is the successive over-relaxation method (Hirsch, 1992), see Section 3.8. The optimal relaxation factor \(\omega\) lies typically in the range 1.8-2. The default value is \(\omega=1.95\).

5.9.3 Simulation time for transient calculation

Simulation stop time is given in Solve/Options for transient calculation, see Figure 5.22. The start time, also denoted by current time since it changes with the simulation, may also be arbitrarily chosen. A reason for changing the start time from zero may be to fit the start time to a certain function time step. As an example, assume there is a function with weekly step-wise linear values during 10 years. If you only want to use the last years’ data, set the start time to 9 years. A special format for time input may be used (instead of using seconds), see Section 5.7.1. The current simulation time will be put to zero when a reset is made, see Section 5.9.6.

![Figure 5.22: Simulation time and current time.](image)

5.9.4 Simulation window

A window with information about the calculation is shown during the simulation. Figure 5.23 shows the steady-state and the transient cases, respectively. Information is given such as stop criterion, iteration, errors, heat flows, maximum and minimum node temperatures, and number of cells. There are short cuts to boundary flows, see section 5.10.1, Stop criterion, see Sections 5.9.1 and 5.9.3, and to Screen update, see Section 5.9.5.

In the steady-state case (left), the relaxation coefficient may be changed.

In the transient case (right), the stable time-step is shown in the lower left side. If functions are used, the function values will be shown in the lower right side.

\(^2\) It was sufficient if the criterion was fulfilled ten times in version 3.0 of HEAT2.
The “Turbo” button enables more CPU-time to the actual iteration (solving) process. The performance of other processes (so-called threads), such as moving or rotating the graphics, (or even working with other programs simultaneously), may then be slow. A disabled “Turbo” will provide more CPU-time to other processes, but will on the other hand increase computational time for the problem.

5.9.5 Screen update

Data shown during the calculation are updated as defined in item Solve/Screen update, see Figure 5.24. The update interval may depend on number of iterations, on CPU-time (real time), or on simulation time in transient cases. The default value for the screen update is set to every 3:rd second. Note that the update interval also affects the recording interval, see Section 5.13.

5.9.6 Reset

There are three options for resetting a calculation. The first one Solve/Reset calculation sets the iteration number and the current simulation time to zero. The second one Solve/Reset temperatures initializes the temperature field. The third one does both.

5.10 Output

5.10.1 Boundary flows

Figure 5.25 shows the windows for boundary flows for steady-state (left) and transient problems (right). The top row shows the sum of all heat flows through the boundary segments in (W/m). The second row shows the sum of all the positive flows. All flows entering the solid material are positive, all flows from the solid material are negative. The first row shows the number of iterations that has been made. In the transient case, the current simulation time is shown on the second row to the right. The flows through each boundary segment are given in units (W/m²) and (W/m). The accumulated heat flows (kWh/m) are given in the transient case. All boundaries with zero flow are shown in the last row.
5.10.2 Heat flows for internal modifications

5.10.2.1 Example 1

Figure 5.26 shows the heat flows for a problem with one heat source (cavity 1) and an empty cavity with radiation (cavity 2). The boundary conditions are \(T = 0 \) on the left surface, \(T = 1 \) on the right surface and \(q = 0 \) on the top and the bottom. The heat flow \(\sum |Q_b| \), shown as **Sum.abs. flows** in the solve window, include the flows through the cavity boundaries (1.6613 W/m) and the external boundaries (0.679+1.679 W/m) and becomes 4.0193 W/m.

Figure 5.26: Calculated heat flows for a problem with one heat source (cavity 1) and an empty cavity with radiation (cavity 2).
5.10.2.2 Example 2

Consider Figure 5.27 showing a problem with two internal modifications. The first one is a heat source of 3 W/m, the second one is a cavity with radiation (the white field with code 2:2). The boundary condition on the left and right sides are \(T=0\) with \(R=0.04\) and \(T=1\) with \(R=0.13\), respectively. The upper and lower boundaries have an adiabatic (\(q=0\)) boundary condition. Figure 5.28 shows the heat flow intensities.

Note the boundary flows. The heat flow at the right boundary will be positive (directed into material) above the isotherm \(T=1\) (the horizontal line in the middle to the right), and negative below it.

Figure 5.27: Temperature field for a problem with two internal modifications. The first one is a heat source of 3 W/m, the second one is a cavity with radiation (the white field). The boundary condition on the left and right sides are \(T=0\) with \(R=0.04\) and \(T=1\) with \(R=0.13\), respectively.

\[\text{Figure 5.27: Temperature field for a problem with two internal modifications. The first one is a heat source of 3 W/m, the second one is a cavity with radiation (the white field). The boundary condition on the left and right sides are } T=0 \text{ with } R=0.04 \text{ and } T=1 \text{ with } R=0.13, \text{ respectively.}\]

\[\text{See Appendix D for color image}\]
Figure 5.28: Heat flow intensities.

Figure 5.29 shows the steady-state heat flows through the four sides and the total flow of each area (a positive flow is directed from the cavity into the solid material). All four flows are positive from the first area with the heat source. The heat will flow into the cavity on the lower and right sides. Since no effect is given (ventilation is zero) in the cavity, the net heat flow is zero. The net positive flow (sum of all positive flows) and the net flow for all areas are shown at the bottom.

The flows for each area can be given in units (W/m²) or (W/m), see top row.

Figure 5.30 shows the boundary flows. Note the absolute heat flow in the simulation window, see Figure 5.31. The sum of absolute heat flows (q=6.8402) involves the internal modifications (q=3.6539) and the boundary flows (q=0.0932+3.0932). The boundary net flows at the bottom in Figure 5.31 shows relates to external boundaries, see Figure 5.27, (i.e. q=0.0932-3.0932=-3 W/m).

Figure 5.29: Heat flows for internal modifications.

See Appendix D for color image.
5.10.3 Results for radiation

Figure 5.32 shows the results for area 2 for the problem in the last section. The second row shows the gas temperature T_a, the ventilation conductance (or convectance) $K_v (W/K)$, the area of the cavity (m2), and the number of radiation nodes N_R.

The following results are given for each radiation node if box Details for area is checked: calculated surface temperatures T_{sj} for $j=1..N_R$ (see Figure 10.3), the temperatures in the boundary cells T_{bj}, the conductances K_{bj} between the center of the cell and the surface of the enclosing cells i,j, and heat flows q_{bj} (W/m).
5.10.4 Temperatures and heat flows at a point

Menu item Output/temp at point shows the temperature, heat flow, and the numerical cell indices at arbitrarily chosen points \((x, y)\), see Figure 5.33.

The temperature \(T\) (°C), and the heat flow components \(Q_x\), \(Q_y\), (W/m²), may also be obtained for any arbitrarily chosen point \((x, y)\) by positioning the cursor at the desired location when the Tools button is selected, see Figure 5.34. The coordinates and indices \((i, j)\) for the numerical cell (where the point lies) are also shown. Areas of particular interests may be enlarged by left clicking and moving the mouse up and down.

5.11 Conductances and capacities to file

Conductances and capacities may be written to a text file, see menu item Output/Conductances and capacities to file. The format is shown below. The first line contains a headline. The following rows show the index, four conductances, and heat capacity for each cell:

\[
i, j \quad K_{i-1/2, j} \quad K_{i+1/2, j} \quad K_{i, j-1/2} \quad K_{i, j+1/2} \quad C_{i, j}
\]
5.12 Temp (MATLAB) to file

The temperatures are written to a file that may be read by MATLAB version 4.0 and forward. Three files will be produced with the extensions *Filename.X*, *Filename.Y*, and *Filename.Z*. The Z file contains the cell temperatures (a matrix with \(m \cdot n \) values). The files X and Y hold the coordinates to the middle of the cells (array with \(m \) and \(n \) values, respectively). HEAT2 will also make a MATLAB script file with the name *filename.M*. This script can be executed directly in MATLAB which will produce a plot, see Figure 5.35. MATLAB may produce different kind of graphs, such as contour and surface plots. See the MATLAB manuals for further information.

![Figure 5.35: Mesh image by Matlab showing temperatures for the problem with 85 heat sources of 1 W/m, see Figure 5.10.](image)

5.13 The recorder

Output values may be saved to a list during the simulation. The recorder can save up to 25 different values as a function of time or number of iterations. What to be recorded is chosen from the pick list in Figure 5.36. It is possible to combine different types, e.g. temperatures or heat flows at 20 locations, and 5 columns that record the heat flow through 5 different boundary segments. A recording will only be made during the simulation if **Record enabled** is checked.

The values will be recorded at each screen update (Solve/Update or short cut button **Update interval**) as shown in Figure 5.37, in this case every simulated hour. Each row in the list will contain the time (in time string format or in seconds) or the number of iterations and the actual recorded value(s). The update interval may be changed during the simulation (or between two simulations).

A list may be saved (*.REC) and later be opened. Data may be cut and pasted from the **Edit** menu.
Figure 5.36: Data are recorded in columns as a function of time (transient) or iterations (steady-state).

Figure 5.36 shows the recorder with three columns defined. The two first columns will record the temperatures at \((x, y) = (25.485, 25.356)\) and \((26.385, 25.356)\) for the slab problem (slab1.dat). The points are located 1 dm down in the floor and 1 dm and 1 m from the internal side of the wall, respectively. The third column records the heat flow through the floor area (W/m) which is boundary segment 3 (given in the Data entry). Figure 5.38 shows the output with an update interval of 1 hour. Figure 5.39 and Figure 5.40 show the recorded columns (see menu item Graphics and menu box Show graphics for column in Figure 5.36).

Figure 5.37: The time interval for recorded data is given in item Solve/Update.

Figure 5.38: Three columns (two temperatures and one heat flow) have been recorded with a update interval of 1 hour.
A recording will start whenever the simulation starts, and stop whenever the simulation stops, if the recorder is enabled (even though the recorder window is closed). An indication is shown (REC will be displayed on the bottom row in the main window) if the recorder is active. Recorded values will be appended to the end of the list. The list may be cleared in the Actions menu. A chart of the recorded values may be viewed by pressing the item Graphics in the record window.

Figure 5.41 shows the heat flow through the external boundaries for a steady-state case. The number of iterations is shown on the x-scale. The update interval (Solve/Update) is set to each iteration step in this case. The “rollercoast” behaviour is due to the relaxation coefficient (ω=1.95). Note that the label on the x-axis is “iterations” in the steady-state case. In the transient case, the label will be an optional time string (seconds, minutes, hours, days, months, years, or a mix of these).

The chart will be automatically updated if visible during the simulation. This will increase the run time, so it may be a good idea to close the window (and the recording window) if speed is crucial.

It is possible to view the complete history, or just the last 20 points (Options/Show only 20 last points).

The chart may be saved to the clipboard or to a file in Metafile (EMF, WMF) or in bitmap (BMP) formats. Printing from HEAT2 directly is also possible.
Areas in the chart window can be enlarged by left-clicking the mouse cursor in the upper left corner and moving it to the lower right one. The area will be restored by making the opposite move by starting in the lower right corner, or by clicking menu item Options/Reset axis. The area may be moved by right-clicking. The chart may be edited (Options/Edit chart). Two of the features that might be mentioned here are changing the titles and adding legends.

Note that it is possible to open function values (*.FUN) in the record list and graphically see the variation as stepwise-linear values.

5.13.1 What can be recorded?

The pick list in Figure 5.36 shows the six options that may be recorded:

1. Q, sum of all boundary flows [W/m]
2. Q, sum of boundaries i1, i2, .. [W/m]
3. T, point (x, y)
4. Q, point (x, y) [W/m²]
5. Q, sum of int. mod. areas i1, i2, .. [W/m]
6. Q, through line [W/m]

The fifth type is a heat flow through internal modification areas. One or more of the four boundaries of each area may be excluded. Figure 5.42 shows that the added heat flow through the lower boundary will be recorded for four areas 1, 2, 3 and 5.
The sixth type is a heat flow through an internal line. This allows for internal heat flows at arbitrarily chosen locations to be recorded. Lower left and upper right coordinates are to be specified. The line has to be vertical or horizontal. If there is no mesh points at the desired location, use menu item *Input/insert mesh point* to allocate new mesh points in order to fit the line. The line may be placed along a boundary segment as well as being inside the computational volume.

![Internal heat flows may be recorded for a vertical or horizontal line.](image)

5.14 Changing the record chart

5.14.1 Introduction

The menu box *Show graphics for column* in Figure 5.36 brings up a chart over one of the recorded data columns. The properties of this chart may be changed by the chart editor (*Options/Edit chart* in the *Chart for record* window), see Figure 5.44.

![Chart settings may be changed in menu item Options/Edit chart.](image)

5.14.2 Help

To get help on any topic in the Chart Editor, select the button at the top right hand side of the Editor window and drag it onto the Topic in question.

5.14.3 Editor design

There are two principal sections to the Chart editor, Chart parameters and the Series parameters, which are separated as two tabs of the Chart Editor.

Chart pages
You may define overall chart display parameters as follows:

Series page - You can change a series type to line, bar, area, point, etc. Select the series type of choice from the gallery.

General Page - Chart rectangle dimensions, margins, zoom and scroll, print preview and export

Axis Page - All axes definitions. Some parameters depend upon the series associated with the axis.

Titles Page - Title and Footer

Legend Page - Legend display. Formatted displays work in conjunction with the chart series. See also the 'General' page of the Series.

Paging Page - Definition of number of points per chart page

Walls Page - Left, bottom and back wall size and color definitions

3D – 3D perspective options.

Series Pages

The series pages contain parameters dependant on the series type concerned. The most important options are as follows:

Format Page - Contains Series type specific parameters

Point – Visible points, margins

General Page - Series value format, axis association

Marks Page - Series mark format, text, frame and back color and positioning

5.15 Info log

The info log (item Output/Info log) contains information of input data and generated numerical mesh for the considered problem, see Figure 5.45. The stable time step is shown, and the location for the cell that determines it. The info log is automatically created when a simulation is started or a problem is loaded.

Figure 5.45: The info log.
5.16 Graphics

5.16.1 Introduction

Figure 5.46 shows the “graphic window” that can display temperatures, isotherms, materials, numerical mesh, boundary conditions, and more. The graphic window will be updated whenever new input data are given. Pictures showing temperatures and flows are updated during the simulation (may be changed in item Temperatures/Update figure on solve). Colors and fonts may be changed in item Settings.

![Figure 5.46: The graphic window.](image)

5.16.2 Basic commands

The picture may be rotated, moved, or zoomed using the top tool-bar, the mouse, or directly from the keyboard, see Figure 5.47 for mouse and keyboard commands. The list is also displayed in item Tools/Help shortcuts.
5.16.3 Menu item File

5.16.3.1 Saving images

The images may be saved to a bitmap format (File/save image as bitmap) or cut to the windows clipboard (File/Cut image to clipboard).

The image may be cut and pasted into another program, e.g. Microsoft Word (as it is in this manual). Using the cut option in File/Cut image to clipboard will give an image without the top window frame, see Figure 5.48 (top). Using the two keys Alt-Print Screen will capture the current active window (the Print Screen key will capture the whole screen, see Figure 4.21). The images can be re-scaled in e.g. Word. Note that the resolution will be the one on your screen (1024-768 will give better quality than 640-480). Printing directly from HEAT2 will produce better quality with the printer's resolution (a 15” screen with a resolution of 1024-768 has about 75 DPI as a comparison to a 600 DPI printer), see Figure 5.51.
Figure 5.48: Use the cut option in File/Cut image to clipboard to get an image without the top window frame (top). Press Alt-Print Screen to capture the current active window (bottom). The active window has often a blue top menu row.

5.16.3.2 Printing images from HEAT2

Figure 5.49 shows the print options where the pen thickness can be changed. There is an option for a simple preview with a green frame that outlines the paper, see Figure 5.51. The image can be positioned and enlarged or reduced in size.

Directly printing by the print command will use the resolution of the current printer, see Figure 5.50. It is also possible to print a screen dump (with poor quality).

Figure 5.49: Print options.
Figure 5.50: A simple preview with a green frame that shows the paper borders.

Figure 5.51: Isotherms printed directly from HEAT2. The printer’s resolution will be used, in this case 600 DPI. This picture has then been scanned into this document.

5.16.4 Menu item Options

Figure 5.52 shows the menu item Options.
5.16.4.1 Viewing thermal conductivities and heat capacities

Click “Materials” on the bottom tool bar (or check item Options/show materials) to view thermal conductivities, see Figure 5.52. The color and the scale gives the thermal conductivity.

Clicking the scale area to the right (or Options/Material scale options) brings up the window shown in Figure 5.53. Figure 5.54 (left) shows colors sorted by material names (two material may have the same thermal properties but different names). Figure 5.54 (right) shows sorting by defined areas (white indicates default value), see Section 4.3.
5.16.4.2 Outlined materials

Figure 5.55 shows the input boxes as given in the thermal properties list (option Options/boxes). Figure 5.56 shows the interface between the materials with a black line (see menu item Options/Outline materials in the graphics menu).

Figure 5.55: Material boxes as by Options/boxes.

Figure 5.56: Materials outlined as shown by Options/Outline materials.
5.16.4.3 Absolute lengths

Figure 5.57 shows the lengths between each mesh segment (left). It is also possible to view the x- and y-coordinates to each input mesh coordinate (menu item Options/Absolute lengths), see Figure 5.57 (right).

![Figure 5.57: Lengths between mesh coordinates shown at left and absolute lengths to each mesh coordinate shown at right.](image)

5.16.4.4 Resistance lines

Resistance lines may be shown by item Options/Resistance lines in the graphics menu. Figure 5.58 shows a resistance line between input mesh coordinates (0,1) and (1,1) as a dotted red line.

![Figure 5.58: The resistance line between input mesh coordinates (0,1) and (1,1) is shown by a dotted red line.](image)
5.16.5 Menu item **Bounds**

Figure 5.59 shows the menu item **Bounds**. In this case, the outlined boundaries are shown and the boundary conditions. It is also possible to view current heat flow in (W/m²) or in (W/m), and the boundary air temperature (this will change if a temperature function is used).

![Menu item Bounds](image)

Figure 5.59: Boundary conditions as shown by **BC types values**.

5.16.6 Menu item **T and Q**

Figure 5.60 shows the **T and Q** menu. The picture is updated (unless **Temperatures/Update figure on solve** is disabled) during the simulation at time interval given in **Solve/Screen update**.

![Menu item T and Q](image)

Figure 5.60: Temperatures (rotated figure). Note that the number of bars in the scale will be reduced if the window if this is too small to hold all (in this case the number of bars is reduced automatically from 21 to 15).
Figure 5.61: Options for temperature scale (left). The hue-lightness-saturation color model (right).

Click the scale bar (or Temperatures/options for scale) for options, see Figure 5.61 (left). The minimum and maximum temperatures for the scale may be given here. Option Range current temp sets the scale to the maximum range accounting for all surfaces within the drawing window.

The number of bars in the scale may be changed. The temperature may be shown in colors or in grayscale. The colors are calculated according to the hue-lightness-saturation model used by Tektronix and based on the Ostwald color system, see Figure 5.61 (right). Hue is the angle around the double hexcone. Saturation is measured radially from the vertical axis, from 0 on the axis to 1 on the surface. Lightness is 0 for black (at the lower tip of the double hexcone) and 1 for white (at the upper tip).

The hue variable is defined from magenta to blue using a certain number of colors (Num colors).

A certain temperature interval may be disabled by clicking the temperature scale. Figure 5.62 shows two disabled temperatures, \(T=11 \) and \(T=16 \) °C. This means that the surfaces with temperatures between 10.5-11.5 and 15.5-16.5 will not be drawn (the temperature step is 1 in this case since there are 21 bars). A click with the left mouse button on the scale will enable/disable an interval. A click with the right mouse button will enable/disable all intervals.
5.16.6.1 Better picture quality with pixel by pixel drawing options

There are two ways to draw images representing temperatures and heat flows. The first way is to use the option “cell by cell”, see Figure 5.63, where each numerical cell is filled with the color given by the cell temperature or in the heat flow case as an average of the heat flows through the four boundaries of the cells. The second way, which is added to version 4, is to draw each screen pixel individually using interpolation, see Figure 5.64.

Figure 5.62: Temperature intervals may be hidden by pressing the scale color, in this case $T=16$ and $T=11\, ^\circ C$.

Figure 5.63 Temperatures drawn cell by cell. This method is often quick may have a visible cell grid.
Figure 5.64: Temperatures drawn pixel by pixel. The image is smoother but may take some time to draw.

The drawing time for the two different options depends on the number of cells and how big the image is. The option “cell by cell” is normally faster when the number of pixels is greater than the number of cells. For a small image (typically with more numerical cells than pixels), the option “pixel by pixel” is normally fastest. HEAT2 draws by default the fastest method (the last menu option). The option “pixel by pixel” gives the best quality for presentation.

5.16.6.2 Heat flow magnitude

The heat flow magnitude (W/m²) may be drawn by clicking the Q button on the bottom tool bar. The scale options are the same for temperatures, such as choosing color or black and white presentation. Figure 5.65 shows the heat flow intensity field (W/m²) drawn cell by cell in color. This plot of the heat flow magnitude makes it visually simple to determine thermal bridges and to improve designs by optimizing the insulation at areas with large heat flows. Figure 5.66 shows the heat flows drawn pixel by pixel.

Figure 5.65: The heat flow intensity field (W/m²) drawn cell by cell.
5.16.6.3 Heat flow arrays

5.16.6.3.1 Options for heat flow arrays

Arrays indicating magnitude and direction of heat flow may be drawn by pressing the bottom tool bar button \(Q_{arr} \). The arrows may be shown separately or together with an image of materials or temperatures or heat flows, along with isotherms. Figure 5.67 shows black arrows drawn together with a color representation of heat flow.

Figure 5.67\(^{\text{col}} \): Heat flow arrows drawn together with a color representation of heat flow.

Figure 5.68 (left) shows the options for heat flows arrays (right-click bottom tool bar button \(Q_{arr} \) to show the menu). The lengths of the arrays indicate the magnitude of the heat flow intensity. The lengths are

\(^{\text{col}} \) See Appendix D for color image
normalized so that the maximum heat flow is shown with an about one centimeter long array. The lengths may be adjusted in option Length.

![Options for heat flow arrays](image1)

Figure 5.68: Options for heat flows arrays (right-click bottom tool bar button Qarr).

The base of each array starts in a grid point. The grid size can be changed by option Density and the grid may be moved horizontally and vertically by options Offset X and Offset Y, respectively. The grid is normally regular but may be changed to a cross pattern where arrays are drawn when \(i+j\) is even, see Figure 5.69. The size of the array head is given by option Head and filled if option Fill head is checked, see Figure 5.70.

![Arrays drawn in a cross pattern](image2)

Figure 5.69: Arrays drawn in a cross pattern.

col See Appendix D for color image
The option **Normalize sub-areas** means that the lengths of the arrows visible in the current window are relative to each other, where the longest arrow is about 1 cm (this can be scaled by option **length** as mentioned before). In this case the maximum heat flow in the current window is displayed (Max Q), see Figure 5.71. When **Normalize sub-areas** is unchecked all arrow lengths are relative to the maximum heat flow in the whole computational area, see Figure 5.72.

Figure 5.70: Arrays in a lower density cross pattern without filled heads.

Figure 5.71: The option **Normalize subareas** means that the lengths of the arrows visible in the current window are relative to each other, where the longest arrow (here about 6 W/m² in the middle of the floor) is about 1 cm (can be scaled by option **length**).
Figure 5.72: The option “Normalize subareas” is unchecked here meaning that the lengths of the arrows are relative to the maximum heat flow in the whole computational area (which is about 30 W/m²) with an arrow of about 1 cm. The arrows are small here since the largest heat flow in the window is just about 6 W/m². The lengths can be scaled by option “length”.

The arrays may be color coded according to the heat flow color, see Figure 5.73. Note that if color-coded heat flows arrays are shown together with a color representation of temperatures, only the temperature scale will be shown. The array color may also be Background opposite using black arrays when the background is white and vice versa. The color may also be Defined arbitrarily. Color-coded arrays allow certain intervals to be masked by clicking the scale bars. Figure 5.74 shows heat flow arrays for two intervals between 4.5-5.5 and 9.5-10.5, respectively.

Figure 5.73: Color-coded arrays. The scale range may be changed by clicking in the white area beside the scale bar (or in menu item T & Q/Scale options, or by right-clicking the bottom tool bar button Q).
5.16.6.3.2 Printing heat flow arrays

Printing of heat flow arrays (File/Print) will use the printer’s resolution (e.g. 600 DPI). The thickness of
the heat flow arrays may be chosen in the print dialogue, see Figure 5.75.

Figure 5.75: The thickness of the heat flow arrays may be chosen in the print dialogue.

5.16.6.4 Viewing isotherms

Figure 5.76 shows options for isotherms (Temperatures/Options for isotherms or short-cut by right-
clicking on the menu bar item Iso). The result is shown in Figure 5.77.

The range may be set automatically to the min and max temperature for each screen update, or to a fixed
range. The Temperature step is the interval in degrees for the isotherms between the given minimum and
maximum temperatures.

A calculation of isotherms is made for an arbitrarily chosen discretation in pixels. A smaller value will
give a denser grid resulting in smoother isotherm curves, but will on the other hand increase the time it
takes to show them. The smallest value that may be given in pixel step is 1. The grid may be shown by
checking Show pixel step.

Isotherm curves may be labeled with the temperature values. There is an easy way to spread these values
along the curves and avoiding them to clump together. There is a number of short lines that are put
together in every isotherm. When the number of lines that have been drawn equals the value given in
Configuration, the isotherm will be labeled at that position. Note that the pixel step affects the position. A
value of the configuration may typically be about 10-150. The best way to get a clearly labeled figure is
simply to try few number of combinations. The labels is shown when Show labels is checked.
The color of the isotherms may be altered in Color for isotherm. The check box background opposite applies to white and black (if the background is black then the isotherm color is white, and vice versa). The thickness of the curves may be increased in menu item Settings/Thick pen.

Figure 5.77: Isotherms with interval of 1 °C labeled in background color.

5.16.6.5 Inverted gray-scale

Inverted gray-scale, see Figure 5.78, has been added in the T and Q/Scale options menu (also right-clicking on the T and Q buttons on the bottom tool bar.)
5.16.6.6 Showing temperatures and heat flows in cavities

Temperatures and heat flows in cavities may be shown graphically by enabling menu item T and Q/Show T and Q in cavities in the Graphics menu, see Figure 5.79. This applies to the following types of cavities:

- Air hole (internal modification type E)
- Hole with a fluid with capacity (internal modification type F)
- Radiation and ventilation inside cavities (internal modification type G)
- Window frame cavities

5.16.7 Menu item Tools

It is possible to ‘maximize’ the area (item Tools/maximize). This means that the scale in each of the two directions will be adjusted to the maximum length in its own direction, see Figure 5.80. As a result, the picture will be stretched in one direction. In some cases, this will make it easier to see details without having to enlarge areas (see the example in Section 9.3 and input file cenex1.dat). If no ‘maximizing’ is chosen (default), the scale will be adjusted to the largest length of the two directions. In this case, the scale will be the same in all directions.
Figure 5.80: The scale in each of the two directions is adjusted to the maximum length in its own direction (‘maximized area’).

5.16.8 Menu item Settings
Fonts and colors may be changed in item Settings, see Figure 5.81.

Figure 5.81: Fonts and colors may be changed in item Settings.
6. HEAT2W - graphical preprocessor for HEAT2

6.1 Introduction

HEAT2W is an interactive drawing program that serves as a preprocessor to HEAT2. With this program it is even simpler to describe the geometry and materials for a large range of heat transfer problems. The program works as common Windows programs for creating drawings.

The construction is drawn in HEAT2W using overlapping rectangles of different materials. A file, always named HEAT2W.DAT, is generated that may be read by HEAT2, see Figure 6.1. Boundary conditions have to be specified in HEAT2 before the problem can be solved. Note that the programs work with different input files. HEAT2W can save and open drawn construction as H2W files. HEAT2 works with .DAT files. It is easy to toggle between the two programs by using the Windows commando <Alt><TAB>.

![HEAT2W and HEAT2 diagram](image)

Figure 6.1: Schematic figure how HEAT2 and HEAT2W work. HEAT2W may be used as a preprocessor to HEAT2. The construction is drawn in HEAT2W using overlapping rectangles of different materials. A file, always named HEAT2W.DAT, is generated that may be read by HEAT2. It is easy to toggle between the two programs by using the Windows commando <Alt><TAB>.

HEAT2W provides a few advantages being a program under the Microsoft Windows environment, such as exporting (or importing) objects (e.g. pictures or text) via the clipboard to other programs for drawing or editing. It is also possible to scan a building design drawing and import it via the clipboard into HEAT2W. The actual heat transfer problem can be described by drawing rectangles "on" the imported design drawing.

Note that it is possible to do all input in HEAT2. For simpler cases, it is often quicker to work only with HEAT2.

6.2 Drawing, moving, and changing objects

The tool bar shown to left of the drawing area, see Figure 6.2, has four icons: ‘Select’, ‘Zoom’, ‘Rectangle’, and ‘Text’. The tools are chosen by clicking on them with the mouse or picking the item in menu item ‘Tools’. To draw a rectangle, choose the ‘Rectangle’ (third icon from the top). Put the cursor somewhere in the drawing area and press the left mouse button. Then, move the mouse and release the button. There will now be a rectangle in the drawing area.
Figure 6.2: HEAT2W has a menu system, a drawing area, a tool bar on the left, and vertical and horizontal ‘scrollers’ and rulers. This example shows floor heating in a concrete slab.

To choose another material, press the TAB key (shortcut for item ‘Pick’ in menu item ‘Materials’). Every material has its own unique brush. The brush is defined by color and pattern. It is discussed later how to define a new material and brush.

Figure 6.3^{col}: Calculated temperatures in HEAT2.

^{col} See Appendix D for color image
Now, choose ‘Select’ at the top of the tool bar and click once on the rectangle that you drew. The selected rectangle will now get marks on each corner. Move the rectangle around in the drawing area with the mouse. The rectangle will be copied instead of dragged if the `<Ctrl>` key is pressed and held down while moving the mouse.

It is possible to select multiple rectangles, see Figure 6.5. These objects may be moved, re-sized, etc. Rectangles that are hidden under other rectangles may be put on the top with the commando ‘Send to Front’ in ‘Arrange’. To put it back use ‘Send to Back’.

Figure 6.5: Multiple objects may be selected, copied, and moved together. In this case, a stairway heated by pipes is built by copying and pasting of one stair.

col See Appendix D for color image
Any object can be increased or decreased in size by stretching any of its corner. The length and width can be specified by a double click on the object. To un-select any object, move the cursor to an empty area and press the left button.

The material of the rectangle may be changed by picking the desired item in the material list (TAB key). The material list will give you information on every rectangle that you click on.

Tip

If the button is pressed and held down for about a second (and the tool is ‘Select’) you will get a bitmap instead of a region. Dragging a bitmap provides much better feedback than dragging a region. It may however be ‘heavy’ to drag a bunch of bitmapped rectangles on a slow computer.

Any area can be enlarged by selecting the tool ‘Zoom’. To return to the ordinary picture go to item ‘View’ and ‘Actual Size’. The item ‘Fit in Window’ shows the maximum area for the drawing space. The icon marked with an ‘A’ at the bottom of the tool bar is used for putting text in the drawing area. Text can be selected and moved around as a rectangle may be moved. The color, height, and font, can be change in menu item ‘Pen’.

A grid of a certain step may help you in drawing the rectangles. This step may be given in item ‘Grids...’ under the menu item ‘View’. Choose item ‘Show Grid’ to view the grid.

6.3 Using the clipboard

Any drawing may be copied to the clipboard and pasted to other instances of HEAT2W. A drawing can also be pasted into other Windows programs, e.g. Microsoft WORD (see Figure 6.2).

Earlier drawn constructions may be imported using the clipboard. For example, assume that you have just drawn a window that you want to put in a wall earlier saved in file MyWall.H2W. First, save the current file e.g. MyWindow.H2W, then load MyWall.H2W and select the wall you want to copy and export it to the clipboard. Load MyWindow.H2W, and paste the wall into the drawing. This allows you to build collections of construction details. Note that material list must contain all used materials in both files.

6.4 Editing the material list

There are about 20 materials defined in HEAT2W. Press the TAB key to list them. The thermal properties are taken from ‘Catalogue of Material Properties’, International Energy Agency, report Annex XIV, Volume 3. Average data is taken for density, specific heat capacity, and thermal conductivity. The materials can be viewed by loading the file MAT.H2W.

The materials may be edited (name, thermal properties, and brush) in menu item ‘Materials’. Materials that currently are used in the drawing area are shown in capital letters in the list. You can only delete a material that is not in current use (shown in small letters).

To add a new material to the list is a bit tricky. Since every material has its own unique brush (defined by color and pattern) a new brush must be defined for this material. The procedure is as follows. Go to menu item ‘Brush’. Choose a color in item ‘Color’. As you can see the color can be given as primary colors or values in RGB coordinates. After deciding the color, choose the pattern for the brush. The pattern may be solid, brick, hatch, or degree of color saturation, to mention a few of the available patterns. The best way to obtain a ‘nice’ brush is to draw a rectangle, try a new brush, draw another rectangle, and so on. After this is done, enter item ‘Edit’ and give name and properties for the new material. Press insert and the new material is defined with the current brush.

Notice that the rectangles that was drawn during the step when you tested different brushes do not have any material name connected to them. These rectangles are invalid and if you do not delete them yourself, HEAT2W will later on when the output file will be written.

Also note that the program checks that the new brush is unique (not already in the material list). However, since more than 16 000 000 colors may be defined there is a risk that you choose a color that looks identical to a color that already exists. This is on your own responsibility. It may be good idea to define a
brush for a material that are similar to other brushes of materials of the same kind. E.g. concrete, lightweight concrete and cellular concrete is defined in HEAT2W with a bluish nuance.

The material list will be saved with the current drawing to ensure that the drawn rectangles always have their materials defined. It is of course possible to save just the materials without any rectangles drawn.

It may be a good idea to add materials to the same file e.g. ‘MyMat.H2W’, and then load the file for every new drawing, and save it with a new filename. If a drawing is copied to the clipboard and pasted between different instances of HEAT2W make sure that the materials are always defined in the current material list.

It is also possible to start HEAT2W with a user-defined material list. Save the list as an ordinary data file (*.H2W) and copy it to HEAT2W.INI.

6.5 Writing the input file for HEAT2

As pointed out before, it is not possible to solve the problem in the current version of HEAT2W. Instead, an input file to HEAT2 is generated by choosing the item ‘Process File’ in menu item ‘Execute’. The name of this input file is always ‘HEAT2W.DAT’. Several checks are made to ensure that the drawing is valid. The area must be continuous, to mention one of the restrictions. HEAT2W will validate the area itself. If there are holes in the drawing, these will be treated as frame cavities, see chapter 11.

The item ‘Numerical Grid’ lets you specify the number of computational cells in each direction. These will be spread out in an equidistant mesh. The default values are 18x18 cells. Note that there always has to be a minimum number of cells for the computational region. However, this is automatically taken care for.

6.6 Mapping the "real world" into the drawing area

The scale factor has a default value of 100:100. This means that 1 cm in the drawing area (according to the rulers) is 1 cm in the real world. Choosing 100:1 means that 1 cm is 0.1 mm, and 100:100 000 means that 1 cm in the drawing area is 10 m in the real world. This factor is set in item ‘Scale Factor’ in menu item ‘Execute’.

The smallest rectangle that can be drawn in the drawing area is 1x1 mm². The maximum drawing area has the height and width of 1 m and is chosen by selecting menu item ‘View’ and ‘Fit in window’. This means that the ratio between the smallest and largest rectangle you can draw is 1:1000. You can for example analyze a wall that is 500 mm thick with a thermal bridge effect due to a 0.5 mm thick steel bar across the wall. Another example is calculation of the heat loss from a house to the ground where the computational area includes soil within 50 m downwards the house. So, the smallest possible thickness of e.g. the slab will in this case be 5 cm. Note that you can change all lengths arbitrarily in HEAT2 afterwards.

6.7 Drawing areas with internal modifications in HEAT2W

Do as follows to draw areas with internal modifications in HEAT2W. Choose heat flow in the material list, see Figure 6.6, and draw the areas in the same way as with materials. Note that the area must be placed within the computational area (and not adjacent to any boundary, see Figure 4.24). By default, the heat flow is 1 W/m which may be changed in HEAT2. The type heat flow may also be changed in HEAT2 to any other type (given temperature, radiation inside cavities, etc.), see Section 5.6. The modification is later changed in HEAT2 from heat flow area to internal pipe with constant effect for the two areas, see Figure 6.7. Note the generated mesh that will approximate the pipes (1230 cells for each pipe). Figure 6.7 shows an example of isotherms for three pipes with given heat sources. Note that the thermal conductivity and the heat capacity for the area with an internal modification is 1 by default. Please change these values to correct ones in HEAT2.
Figure 6.6: Internal modifications may be drawn in HEAT2W by using “Heat flow” in the material pick list.

Figure 6.7: The modification is changed from heat flow area to internal pipe with constant effect for the two areas. Top figure shows temperatures, bottom figure shows heat flows.

See Appendix D for color image
6.8 Limitations in HEAT2W version 1.02

The most important restrictions are as follows. The maximum number of rectangles is 250. The maximum number of materials is 50. The maximum number of boundaries is 250.

Two ‘peculiarities’ may be mentioned. The first one is that when an area is enlarged (Zoom), the corners will sometimes not be marked properly. This is due to a bug in the program not yet found. The second one is that decimal numbers may not be entered for an object, only whole numbers may be used. If there is a wall with a wooden stud of 45.5 mm thickness, 45 or 46 mm must be entered (if the scale factor is 1). This value may however be changed in HEAT2 later.

7. Calculations using pipes

7.1 Pipe with a given heat flow

There are two ways to model a pipe with a given heat flow, see below.

7.1.1 Pipe approximated with a square

The pipe may be approximated with a square with the same area as the pipe, i.e. each of the four sides has the length $D = \sqrt{\pi} \cdot r = 1.77 \cdot r$, where r is the pipe radius. The effect for the pipe (W/m) will be uniformly distributed within the area. Use the internal modification heat source (the heat source may be constant or time-dependent), see Section 5.6.

7.1.2 Pipe approximated with enclosing steps

The modification pipes (heat source) may be used which will approximate the boundary of the pipe by small steps. Consider Figure 7.1. A rectangle with an internal modification is put in the input mesh with coordinates 1,1 (lower left) and 2,2 (upper right). A circle (or ellipse if it is not a square with equal side lengths) will be fitted inside the rectangle. The given effect in (W/m) will be uniformly distributed in all the cells that has the center inside the circle, as shown by the white space in Figure 7.1 (right). The number of cells is dependent on the defined numerical mesh. The number of specified cells for the mesh segment is 8x8=64 of which 52 will be used to approximate the pipe.

This method will give a more correct solution close to the pipe compared to using approximation with a square as described in the previous section. The drawback is that many cells are needed for the calculations. The square approximation is sufficient in most cases.

Figure 7.1: The modification pipes (heat source) may be used to approximate the boundary of the pipe by small steps depending on the numerical mesh.
7.2 Pipe with a given temperature

This case is more difficult to model. The heat flow from/to the pipe depends on the heat resistance for the pipe (total resistance between the fluid inside the pipe and the material/fluid outside the pipe).

7.2.1 Pipe resistance taken into account

If the pipe is insulated (or if the resistance for the pipe cannot be neglected), the pipe may be approximated by a square [Claesson et al, 1983], see Figure 7.2.

\[D = \sqrt{\pi} \cdot r \approx 1.77 \cdot r \] \hspace{1cm} (8.1)

Calculate a resistance \(R_c \) according to Eq. (8.2). The resistance \(R_c \) is then put on each of the four sides of the square. This is done in item internal resistances, see Section 5.8.

\[R_c = \frac{2 \cdot D \cdot \ln(r/(r-d_i))}{\pi \cdot \lambda_i} \] \hspace{1cm} (8.2)

![Figure 7.2: An insulated pipe may be approximated by a square and a resistance.](image)

7.2.2 Pipe resistance neglected

If the resistance for the pipe can be neglected, the modification pipes (given temp) may be used. This will approximate the boundary of the pipe by small steps depending on the numerical mesh as in Section 7.1.2. The temperature will then be given in all the cells that has the center within the circle.

As an alternative, a square with the same area may be used \(D = \sqrt{\pi} \cdot r \approx 1.77 \cdot r \). This will give a somewhat larger error.
8. Performance

8.1 Higher numerical performance

HEAT2 version 4 has increased code optimization giving higher calculation speed. The improvement is greater for Pentium II and III than for ordinary Pentium processors. Table 8:1 and Table 8:2 show benchmarks for the slab problem (slab1.dat) and the corner problem (corner.dat) using Pentium MMX, II and III.

HEAT2 version 4 is for these two problems 11-23 % faster for steady-state calculations and 14-36% faster for transient analysis compared with HEAT2 version 3. Note that the improvement is greater for the Pentium II and III, especially for transient analyses.

The Pentium III 450 is about 3-4 times faster than the MMX 266 but only 10-30% faster than the Pentium II 400 for these benchmarks.

Table 8:1: Benchmarks for the slab problem (slab1.dat).

<table>
<thead>
<tr>
<th>Slab1.dat, N=4555</th>
<th>HEAT2 3.0</th>
<th>HEAT2 4.0</th>
<th>Improvement 3.0 => 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU-time (sec.)</td>
<td>CPU-time (sec.)</td>
<td></td>
</tr>
<tr>
<td>Steady-state, 50 000 iterations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium III 450 MHz</td>
<td>75</td>
<td>61</td>
<td>23% faster</td>
</tr>
<tr>
<td>Pentium II 400 MHz</td>
<td>85</td>
<td>69</td>
<td>23% faster</td>
</tr>
<tr>
<td>Pentium MMX 266 MHz</td>
<td>208</td>
<td>188</td>
<td>11% faster</td>
</tr>
<tr>
<td>Transient, 1 month (97 032 iter.):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium III 450 MHz</td>
<td>103</td>
<td>76</td>
<td>36% faster</td>
</tr>
<tr>
<td>Pentium II 400 MHz</td>
<td>124</td>
<td>91</td>
<td>36% faster</td>
</tr>
<tr>
<td>Pentium MMX 266 MHz</td>
<td>272</td>
<td>236</td>
<td>15% faster</td>
</tr>
</tbody>
</table>

Table 8:2: Benchmarks for the corner problem (corner.dat).

<table>
<thead>
<tr>
<th>Corner.dat, N=675</th>
<th>HEAT2 3.0</th>
<th>HEAT2 4.0</th>
<th>Improvement 3.0 => 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU-time (sec.)</td>
<td>CPU-time (sec.)</td>
<td></td>
</tr>
<tr>
<td>Steady-state, 200 000 iterations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium III 450 MHz</td>
<td>47</td>
<td>40</td>
<td>18% faster</td>
</tr>
<tr>
<td>Pentium II 400 MHz</td>
<td>55</td>
<td>46</td>
<td>20% faster</td>
</tr>
<tr>
<td>Pentium MMX 266 MHz</td>
<td>136</td>
<td>120</td>
<td>13% faster</td>
</tr>
<tr>
<td>Transient, 3 months (291 095 iter.):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium III 450 MHz</td>
<td>46</td>
<td>36</td>
<td>28% faster</td>
</tr>
<tr>
<td>Pentium II 400 MHz</td>
<td>59</td>
<td>46</td>
<td>28% faster</td>
</tr>
<tr>
<td>Pentium MMX 266 MHz</td>
<td>168</td>
<td>148</td>
<td>14% faster</td>
</tr>
</tbody>
</table>
9. Examples

9.1 Example 1 - A wall with a joist

9.1.1 Introduction

Figure 9.1 shows a wall and a joist. We want to calculate the heat loss (W/m) and the lowest surface temperature on the floor. The indoor temperature is 20 °C and the outdoor temperature is 0 °C. The indoor and outdoor surface resistances are 0.13 and 0.04 m²·K/W, respectively. The thermal conductivities (W/m·K) and heat capacities (MJ/(m³·K)) are given in the table.

![Figure 9.1: A non-supportive wall with a thermal bridge.](image)

<table>
<thead>
<tr>
<th>[mm]</th>
<th>15 coating</th>
<th>190 lightweight concrete, λ=0.49, C=1.83</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 insulation, λ=0.037, C=0.094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 insulation, cross bars 70x50, λ=0.19, C=1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2 vapour retarder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 gypsum board</td>
<td></td>
</tr>
<tr>
<td></td>
<td>joist 190 concrete, λ=2.7, C=1.83</td>
<td></td>
</tr>
</tbody>
</table>

9.1.2 Input in HEAT2W

The instructions below show how input can be made using HEAT2W. If you have any problem or do not get the same answer, look at the input file h2wex.h2w.

1. Start HEAT2W. Press the <Tab> key. A list of materials is shown. Choose ‘concrete lightweight’. Draw a rectangle somewhere in the drawing area.

2. Choose Select (the topmost icon on the tool-bar to the left). Click on the rectangle (which now will be marked on the corners). The rectangle may now be dragged by pressing the left mouse button and moving the mouse.

3. Double click (fast) on the rectangle. A window is shown with the width and height (Δx, Δy) of the rectangle. Give (19,100), i.e. 19x100 cm².

4. Press Rect on the tool-bar. Press the <Tab> key and choose ‘rock-wool’. Draw another rectangle next to the first one. Press Select. Double click on the insulation and give the measures (21,100). The width 21 is calculated as 14+7. Move the insulation next to the concrete (without overlapping and without a space between the two rectangles).
5. Press Rect. Press the <Tab> key and choose ‘wood (oak)’. Draw a third rectangle. Give the dimensions (7,5). Place the wooden piece as the top or the bottom one in Figure 9.2 (the vertical location does not have to be exact).

6. Draw and give the dimensions (50,19) for the concrete (pick ‘concrete’ in the material list) as described above. Place the concrete rectangle next to the wooden piece as in the figure.

7. The second wooden piece is yet to be drawn. The first may be copied as follows. Press Select. Hold down the key <Ctrl> and move the first wooden piece.

8. In this example we neglect the small thermal resistance of coating and gypsum boards.

9. Press Execute in the menu and then Scale factor. Give the value 1000 (100:1000 means that 1 cm on the drawing board is 10 cm in reality). The construction may be saved by pressing File and Save in the menu system.

![HEAT2W Interface]

Figure 9.2: The construction drawn in HEAT2W.

9.1.3 Input continued in HEAT2

Go to the program manager in Windows by pressing <Alt> and <Tab> simultaneously. Start HEAT2 by clicking on its icon (if it is not already started). Follow the list below.

1. Load the generated input file HEAT2W.DAT in the menu item File-Load.

2. Figure 9.3 shows input mesh (check Options/Input mesh coordinates), lengths (Options/Lengths) numerical mesh (click Mesh on the bottom tool bar), boundary numbers (Bounds/Show bound num), and thermal conductivity (click Materials on the bottom tool bar).
3. The boundary conditions are now to be specified. Figure 9.4 shows the data (menu item *Input/Boundary conditions*). Three boundary conditions are defined. The second type is linked to boundaries 2, 3, 5 and 6, see Figure 9.3. The third type is linked to boundary 8. The other boundaries (1, 4 and 7) will have the default (first) type which is adiabatic.

![Figure 9.3: Input mesh, lengths, numerical mesh, boundary segments, and thermal conductivity as shown in HEAT2.](image1)

![Figure 9.4: Three boundary conditions are defined. The second type is linked to boundaries 2, 3, 5 and 6, see Figure 9.3. The third type is linked to boundary 8. The other boundaries (1, 4 and 7) will have the default (first) type which is adiabatic.](image2)

Start the steady-state calculation in *Solve-Steady state*. The problem has reached steady-state when the sum of the flows is zero, see Figure 9.5. This will take about a second on a Pentium.
Go to Output-Boundary Flows. A list shows the heat flow through the 8 boundary segments, see Figure 9.6. The heat flow for boundary 8 is $Q = -3.67 \text{ W/m}$ (a negative sign means out from the material). The heat flow through segment 6 is larger compared with segment 2 due to a longer boundary. It may be interesting to compare the results with and without the joist. The heat flow is 3.2 W/m through the wall without the joist.

There is a numerical error due to the mesh. The number of numerical cells is here 189. Using 1000 (or even 20000) cells will give a heat flow of 3.69 W/m, i.e. using 189 cells gives in this case a relative error of less than 1%, $(3.69-3.67)/3.69=0.005$. A simulation with 20000 cells will take less than half a minute on a Pentium. It may be a good idea to use an expansive mesh with small cells where the temperature gradients are high, i.e. near the joist.

Figure 9.7 shows the calculated temperature field. To obtain the temperature at a certain point click on Tools on the menu bar and move the cursor to the desired location. The temperature and the coordinates are shown in the upper right corner.

What happens if the joist is pushed outwards next to the lightweight concrete? Try this on your own. The heat flow becomes 12.4 W/m, and the lowest floor temperature is $T = 16.6 \degree \text{C}$.

Figure 9.6: Heat flows through the boundaries.
9.1.4 Input using only HEAT2

Note that all the input could have been made using HEAT2 only. Figure 9.8 shows the input mesh, boundaries, numerical mesh, and materials sorted by name (A, B, C, and D). The input for the data as shown in this figure is as follows:

1. Go to menu item Input/Input mesh. Give [4] and [5] number of mesh points in the two directions, respectively. Give [8] boundary segments. See Figure 9.9 (left).

2. Go to Description of boundaries. Give the coordinates for the boundary segments, see Figure 9.9 (right).

3. Go to Mesh in x-direction. Give the data as in Figure 9.10 (left).

4. Go to Mesh in y-direction. Give the data as in Figure 9.10 (right).

5. Go to Thermal properties. Give the data as in Figure 9.11.

6. Continue the input from point 3 in Section 9.1.3.
Figure 9.8: Input mesh, boundaries, numerical mesh, and materials sorted by name (A-D).

Figure 9.9: Data for input mesh and boundaries.

Figure 9.10: Data for lengths and numerical mesh in both directions.
9.2 Example 2 - heat loss from a house with a cellar

9.2.1 Introduction

Figure 9.12 shows the cellar compartment of a house. The basement floor consists of 120 mm concrete with 100 mm underlying mineral wool. The wall is constructed by 300 mm haydite and 100 mm mineral wool. The size of the house is 10\cdot10 m² (internal dimensions). Thermal conductivities are given in the figure. The indoor and outdoor surface resistances are 0.13 and 0.04 m²\cdot K/W, respectively.

We are interested to know the heat loss from the house to the ground and the floor temperatures. This is a steady-state case. The indoor temperature is 20 °C and the outdoor temperature is 0 °C. Follow the instructions below. The input procedure is described with a few comments. All input is made using HEAT2. See input file cellar.dat.

9.2.2 The input mesh

The axes of a chosen input mesh for the example are shown in Figure 9.13. We have a symmetrical case, thus only half of the house is considered.
1. Go to menu Input/Input mesh. Give the number of input mesh segments in the x- and y-directions, [4 respectively 5]. Give the number of boundary segments, [8]. See Figure 9.14 (left).

2. Go to Description of boundaries. The boundary segments are given counterclockwise by the coordinates in the input mesh. The first boundary starts at $0,0$. Give the data shown in Figure 9.14 (right).

3. The next step is to specify the dimensions, see Figure 9.15. We choose the computational area to extend 20 m vertically downwards and 20 m horizontally outwards from the house. The number of computational cells is now to be specified for each segment. Selecting an appropriate computational mesh needs careful consideration. To few cells may lead to inaccurate results. One the other hand, using to many increases the computational time. It is obvious that the computational cells should be concentrated toward the house, where larger temperature gradients occur. A computational mesh with cells of decreasing or increasing sizes is called an expansive mesh. Figure 9.16 shows the numerical mesh and lengths of boundaries (check Bounds/Bound length in the graphics window). Figure 9.17 shows the expansive numerical mesh around the cellar.
Figure 9.14: Data for input mesh and boundaries.

Figure 9.15: Data for lengths and numerical mesh in both directions.

Figure 9.16: Numerical mesh and lengths of boundaries.
9.2.3 Material data

Thermal conductivities and volumetric heat capacities are now to be specified for different rectangular areas. Each area is represented by the lower left and upper right coordinates of the input mesh. However, basic data valid for the whole computational area is first given. New input data for a rectangular region replace the old ones. Note that the heat capacity is not used in the steady-state calculation, and may therefore not have to be changed from the default value 1.0. The thermal conductivities in the \(x\)- and \(y\)-directions are now to be specified. These have the same value in our example since only isotropic materials are used.

9.2.4 Boundary conditions

There are three types of boundary conditions:

- Adiabatic surface on boundaries 1, 2, 5 and 8, see Figure 9.13
- \(T=20^\circ\text{C}\) with a thermal surface resistance 0.13 m\(^2\)-K/W on boundary 3 and 4
- \(T=0^\circ\text{C}\) with a thermal surface resistance 0.04 m\(^2\)-K/W on boundary 6 and 7
Figure 9.19: Material names.

Figure 9.20: Three boundary conditions are defined. The second type is linked to boundaries 3, and 4, see Figure 9.21. The third type is linked to boundary 6 and 7. The other boundaries (1, 2, 5 and 8) will have the default (first) type which is adiabatic.

Figure 9.21: The boundary numbers 1..8 are linked to their boundary condition.
9.2.5 The simulation

The steady-state simulation can now be started by pressing F9, see Section 5.9. The simulation takes a few seconds on a Pentium. Go to Output-Flows where the boundary flows are shown. The net flow through the boundaries to the computational area is an indication of whether the problem has reached steady-state or not.

The heat flow from half of the house (symmetric case) to the ground is equal to the flow that passes through boundary 7. This is 26.1 W/m, see Figure 9.23. The temperature field, isotherms, and boundary heat flows are shown in Figure 9.24.

Figure 9.22: The simulation takes a few seconds on a Pentium.

Figure 9.23: Heat flow through boundary segments.
9.2.6 Transient simulation

In the following example, a transient calculation using a sinusoidal variation on the external side of the corner will be carried out. First, define a sinus function (item Functions/Function 1) with a daily variation between -10 and +20 °C with maximum at noon, see Figure 9.25. Give initial temperatures (average, undisturbed temperature deep in the ground) of +5 °C, see Figure 9.26.

![Figure 9.25: A sinus function with a daily variation between -10 and +20 °C with maximum occurring at noon. The time for the phase and period may be given either in seconds or with a time string.](image)

Figure 9.24: Temperature field, isotherms, and boundary heat flows (top figure) and heat flows (bottom figure).
Next step is to couple the function to a boundary condition type (*Input/Boundary conditions*), see Figure 9.27. Give the stop time 10 years (*Solve/Options for transient*), see Figure 9.28.

In this example we will also look at the flows through the internal boundaries during each hour. Enable the record (*Output/Recorder*) by clicking *Record enable* and pick the second item in the list as in Figure 9.29 (top). Click the *Data* entry field and give the numbers 3 and 4 for the internal boundaries as in Figure 9.29 (bottom). This will record the sum of the two boundary heat flows at each screen update (*Solve/Update*) as given in Figure 9.30, in this case once every day. Press the item *Graphics* in the record window to bring up a chart window (this will be empty since no data is recorded yet).
Figure 9.29: Flows and temperature may be saved to a list during the simulation. In this case it is the sum of the heat flows for boundaries 3 and 4 that will be recorded.

Figure 9.30: The time interval for recorded data is given in item Solve/Update).

To start the transient simulation select Solve/Start transient calculation. Consider Figure 9.31. A window (top left) will be displayed showing information such as the chosen stop criterion, number of iterations, and error for temperature and flows. The record window (bottom left) and the chart window (bottom right) show the internal heat flows during each day.
Figure 9.31: A window (top left) will be displayed showing information such as the chosen stop criterion, number of iterations, and error for temperature and flows. The record window (bottom left) and the chart window (bottom right) show the internal heat flows during each day. The minimum heat flow occurs in the end of July (6q20d). See also Figure 9.32. The time to simulate 10 years is a few minutes on a Pentium II (it will take longer if updating of graphics is enabled).

Note that the heat flow through the cellar wall one meter above the ground is included. What is the heat flow through the floor only? Change the simulation stop time to 11 years, and remove boundary 4 from the recorder, see Figure 9.29 (right). Continue the simulation for the last year, see Figure 9.33.
Figure 9.32: The max and min heat flow through the internal boundaries occur in the middle of January "9y20d" (32.7 W/m) and in the middle of July "9y6q20d" (14.9 W/m), respectively. Note that the string "9y6q20d" means that 6 months and 20 days has elapsed on the fourth year, i.e. the middle of July. The max and min outdoor temperature occur at t=0 (Jan 1) and at t="6q" (July 1), respectively. 3

Figure 9.33: The maximum and minimum heat flow through the floor occurs in the middle of March "10y2q10d" (16.5 W/m) and in the middle of September "10y8q10d" (12.5 W/m), respectively. Note the time delay between extreme outdoor temperatures and extreme heat flows through the floor of about 2.5 months.

9.2.7 Input using HEAT2W

The program HEAT2W could have been used in this case but it would probably have taken a longer time compared with using only HEAT2. There would also have been a few problems involved. Materials with the given thermal conductivities must be defined since they do not exist. Alternatively, one could use similar materials and later change the thermal conductivities in HEAT2. Another problem is to draw the soil that extends 20 m vertically and horizontally. The best way is probably to just draw small rectangles defining the soil (shown in a darker shade in Figure 9.34) and later change the size for it in HEAT2, see Figure 9.35.

3 The chart in Figure 9.32 was copied to the clipboard in metafile format (EMF). The chart in Figure 9.33 was copied to the clipboard in bitmap format using Alt-Print Screen, see Section 5.16.3.1.
Figure 9.34: The cellar problem drawn in HEAT2W.

Figure 9.35: Lengths and mesh have to be adjusted in HEAT2.

It may be better to use HEAT2W for complicated geometry, such as that shown in Figure 9.36. Note that the sloping insulation at the edge is approximated by steps using small rectangles. The result is shown in Figure 9.37.
Figure 9.36: A more complicated geometry drawn in HEAT2W. Note that the sloping insulation at the edge is approximated by steps using small rectangles.

Figure 9.37: Results as shown in HEAT2.
9.3 Example 3 - Heat flow through a wall with metal studs

9.3.1 Introduction

Heat conduction in constructions with both insulation and metal parts often causes particular computational problems because of the wide difference in thermal conductivities.

The following example is a test reference case in the European standards (CEN, 1995) for heat conduction in two dimensions. Figure 9.38 shows a cross-section of the wall. The width and height is 0.5 m and 0.0475 m, respectively. There are four different materials with thermal conductivities between 0.029 W/(m·K), and 230 W/(m·K). It is a difficult numerical problem due to the high ratio of the maximum and minimum thermal conductivity. In this case the ratio becomes almost 8000 (230/0.029=7900).

The temperature is 20 °C and the surface resistance is 0.11 m²·K/W at the bottom. The temperature is 0 °C and the surface resistance is 0.06 m²·K/W at the top. The heat flow is zero through the two vertical boundaries due to symmetry.

Figure 9.38: Test reference case in the European standards.

9.3.2 Input mesh

Figure 9.39 shows an example of a suitable input mesh. Consider the mesh in the x-direction. An extra mesh coordinate has been inserted between the mesh points 1 and 3. This allows an expansive mesh to be defined with smaller cells concentrated to areas where the temperature gradients are large, i.e. around point G and where the steel bends, see Figure 9.40. In the y-direction, three coordinates have been inserted in the same way (coordinates 2, 5 and 7). It would of course have been possible to use only three segments in the x-direction, and five segments in the y-direction. But in this way we can specify a better mesh with fewer cells.

Directions for how to give input is not given here. Please look at the input file cenex1.dat which is also listed in Appendix C.
9.3.3 Calculations for different meshes

Table 9.1 shows the calculated heat flows through the wall for six different expansive numerical meshes and the required computation time on a Pentium II 450 MHz. The number of cells used in CENEX1.DAT is 1254 (see fifth row). The error ε for the heat flow is relative to the last case. It is sufficient with about 1200 cells to have an error of 0.1%. The calculation time in this case is a few seconds (about 5000 iterations). The calculation time in the last case with 56880 cells is relatively long since the smallest cells are about 10^{-5} m.

The last column shows the best choices of the relaxation coefficient ω. The calculation time depends largely on this choice for this example. Consider the case with 1254 cells. Using $\omega = 1.995$ gives a calculation time of 2 seconds. Using $\omega = 1.95$ (default value) gives a calculation time of about 20 seconds. A good choice of the relaxation coefficient may be made as follows. Look at the difference between the heat flows at the surfaces after a few hundred iterations for some different values of ω. Choose the coefficient that gives the largest difference. Note that the optimum ω normally becomes larger with a denser grid. It tends to be close to 2 for problems with a wide difference in thermal conductivities as this one.

<table>
<thead>
<tr>
<th>Cells</th>
<th>Q (W/m)</th>
<th>ε (%)</th>
<th>CPU-time</th>
<th>Iterations</th>
<th>Optimal ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>8.541</td>
<td>11</td>
<td>1 sec.</td>
<td>1900</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>9.382</td>
<td>1.2</td>
<td>1 sec.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>374</td>
<td>9.456</td>
<td>0.4</td>
<td>1 sec.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1254</td>
<td>9.479</td>
<td>0.1</td>
<td>2 sec.</td>
<td>4600</td>
<td>1.995</td>
</tr>
<tr>
<td>5016</td>
<td>9.490</td>
<td>0.02</td>
<td>8 sec.</td>
<td>5000</td>
<td>2.0</td>
</tr>
<tr>
<td>56880</td>
<td>9.492</td>
<td>-</td>
<td>45 min.</td>
<td>100000</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 9.1: Calculated heat flows for different meshes.
Figure 9.40: Numerical mesh for the left-most part of the problem (1254 cells).

Figure 9.40 shows the numerical mesh for the critical left-hand part of the problem in the case with 1254 computational cells. The remaining 5/6 of the wall contains about 200 of the 1254 cells.

The heat flow through the wall is 9.5 W/m according to (CEN, 1995). The heat flow calculated by the method to be validated, in this case HEAT2, should not differ by more than 0.1 W/m. About 400 numerical cells suffice to fulfill this requirement.

Table 9.2 shows the surface temperatures obtained by HEAT2 for the cases with 1254 and 5016 cells, respectively. According to (CEN, 1995) the difference between the temperatures calculated by the method to be validated and the listed values shown in the last column should not exceed 0.1 °C. All temperatures are the same, except at location G, see Figure 9.38. The temperature gradients are large at this location. This makes the interpolation difficult. About 4000 cells are needed to meet the CEN requirement. Figure 9.41 and Figure 9.42 show the isotherms and heat flows, respectively, for the left-hand part of the problem.

<table>
<thead>
<tr>
<th>Location</th>
<th>(x,y)</th>
<th>N=1254</th>
<th>N=5016</th>
<th>CEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(0, 0.0475)</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>B</td>
<td>(0.5, 0.0475)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>(0, 0.0415)</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>D</td>
<td>(0.015, 0.0415)</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>E</td>
<td>(0.5, 0.0415)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>F</td>
<td>(0, 0.0365)</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>G</td>
<td>(0.015, 0.0365)</td>
<td>16.1</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>H</td>
<td>(0, 0)</td>
<td>16.8</td>
<td>16.8</td>
<td>16.8</td>
</tr>
<tr>
<td>I</td>
<td>(0.5, 0)</td>
<td>18.3</td>
<td>18.3</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Table 9.2: Calculated surface temperatures (°C).
Figure 9.41: Isotherms for the left part of the problem.

Figure 9.42: Heat flows for the left part.
9.3.4 Conclusions

This reference case is a relatively difficult numerical problem due to the high ratio of the maximum and minimum thermal conductivity (almost 8000). About 1000 cells are needed to give an error of 0.1% for the heat flows through the wall. This calculation took a couple of seconds on a Pentium II 450 MHz. The rate of convergence for this steady-state problem depends largely of the chosen successive over-relaxation coefficient.

The large temperature gradients, especially at location G, makes the interpolation of temperatures difficult. About 4000 cells is needed using HEAT2 to fulfill the requirement for temperatures in (CEN, 1995). About 300 numerical cells suffice to fulfill the requirement for heat flows.

9.4 Example 4 - Roof section with hollow bricks

9.4.1 Introduction

Radiation inside cavities will here be illustrated by a single application concerning an Italian brick roof. Each large lightweight brick contains 16 cavities in a rectangular pattern. See Figure 9.43. The thermal conductivities of different areas are shown. The steady-state process in the two-dimensional section is to be simulated.

![Figure 9.43: Considered section of a brick roof with 16 cavities.](image)

The outside temperature is 5 °C, and the temperature below the roof is 15 °C. The surface resistances inside and outside are both 0.1 m²·K/W. The vertical sides are considered adiabatic.

The cavities are not ventilated ($K_v=0$). The convective heat transfer coefficients α_c are put to 1.0 W/(m²·K) which is the expected order of magnitude from empirical relations (Kreith et al, 1986). The emissivity ε of all surfaces is 0.9. The temperatures are between 5 °C and 15 °C. The temperature level T_{so} is therefore put to 10 °C for all 16 cavities.

The file radex.dat shows the input for this case.

9.4.2 Results for different numerical meshes

The process has been simulated for different meshes. Figure 9.44 shows one of the finer meshes. The number of computational cells is here 3860. Each cavity has $N_e=40$ surface elements. Figure 9.45 shows the input data for the cavities.

Table 9.3 shows the calculated heat flow (W/m) through the brick roof section for five computational meshes. A second order of approximation is used, see Section 10.4.1. The results will in these cases be the...
same if higher orders of approximation are used. The finest mesh with 15440 cells and 80 radiative elements in each cavity is judged to have a very small numerical error. The error relative to the value for this finest mesh is 2.1% with 1412 cells, and 0.3% with 3860 cells. Even in the case with 127 cells and 4 radiative elements (smallest mesh possible with one cell in each segment), the error turns out to be relatively small (2.6%). The last column shows the approximate calculation time on a Pentium II 450 MHz.

Figure 9.44: The numerical mesh with 3860 computational cells and 16 cavities with radiation ($N_R=40$).

Figure 9.45: Input data for the cavities.
Figure 9.46 shows the solve window (left) and boundary heat flows (right). Figure 9.47 shows the calculated isotherms. Figure 9.48 - Figure 9.50 show the air temperatures and heat flows for each of the 16 cavities.

<table>
<thead>
<tr>
<th>cells</th>
<th>N_R</th>
<th>heat flow (W/m)</th>
<th>Error (%)</th>
<th>Iterations</th>
<th>CPU-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>4</td>
<td>5.822</td>
<td>2.6</td>
<td>900</td>
<td>1 sec.</td>
</tr>
<tr>
<td>1412</td>
<td>4</td>
<td>5.849</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1684</td>
<td>8</td>
<td>5.915</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3860</td>
<td>40</td>
<td>5.960</td>
<td>0.3</td>
<td>1500</td>
<td>23 sec.</td>
</tr>
<tr>
<td>15440</td>
<td>80</td>
<td>5.976</td>
<td>-</td>
<td>3300</td>
<td>3.5 min.</td>
</tr>
</tbody>
</table>

Table 9.3: Heat flow, error, iterations and CPU-time for four different meshes.

Figure 9.46: The solve window (left) and boundary heat flows (right).

Figure 9.47: Calculated isotherms shown with the interval 0.5 °C.
Figure 9.48: Heat flows.

Figure 9.49: Air temperatures in each of the 16 cavities.
9.4.3 Choice of \(T_{so} \) and rate of convergence

The temperature level \(T_{so} \) for the linearization procedure may be chosen at will. The choice will influence the rate of convergence in the iteration. Table 9.4 shows the calculated heat flow for different iteration steps for the mesh with 3860 computational cells and \(N_R = 40 \).

Table 9.4: Calculated heat flows (W/m) for the mesh with 3860 computational cells and \(N_R = 40 \).

<table>
<thead>
<tr>
<th>Iteration step</th>
<th>(T_{so}) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.959</td>
</tr>
<tr>
<td>2</td>
<td>5.960</td>
</tr>
<tr>
<td>3</td>
<td>5.960</td>
</tr>
<tr>
<td>10</td>
<td>5.960</td>
</tr>
<tr>
<td>5</td>
<td>5.989</td>
</tr>
<tr>
<td>15</td>
<td>5.989</td>
</tr>
<tr>
<td>0</td>
<td>5.836</td>
</tr>
<tr>
<td>-80</td>
<td>5.030</td>
</tr>
<tr>
<td>100</td>
<td>7.192</td>
</tr>
<tr>
<td>1</td>
<td>5.959</td>
</tr>
<tr>
<td>2</td>
<td>5.960</td>
</tr>
<tr>
<td>3</td>
<td>5.960</td>
</tr>
<tr>
<td>4</td>
<td>5.960</td>
</tr>
</tbody>
</table>

Table 9.4 shows that the choice of \(T_{so} \) is not particularly critical, especially with higher orders of approximation. If \(T_{so} \) is put to the same value as one of the prescribed boundary temperatures, 5 °C or 15 °C, the error in the case with linear (first order) approximation turns out to be about one per cent. Even extreme choices such as \(T_{so} = -80 \) °C or \(T_{so} = 100 \) °C require only three iterations to obtain three digits accuracy.

The calculations take somewhat longer time with higher orders of approximation. For most building physics applications, the linear approximation should be sufficient. Two iterations may be performed to check this in case of doubts.

Note that it would have been sufficient to consider only half the problem since there are symmetry along the vertical line in the middle. It is however not symmetry along the horizontal line in the middle due to the temperature dependent radiation (higher orders of approximation).
9.4.4 Conclusions

The solution procedure was illustrated by an example concerning a brick roof section with 16 cavities. A calculation with some 1700 nodes for the heat conduction and 8 sub-surfaces in each cavity gave a numerical accuracy on the one per cent level and required only a few seconds to be solved. The linear approximation, or one iteration step only, was shown to be sufficient in the considered case.

The choice of the linearization temperature T_{so} influences the required number of iteration steps. However, it was shown that more than one iteration was necessary only for quite extreme choices.
10. Radiation and ventilation in cavities

10.1 Introduction
Heat conduction in solid building parts coupled to long-wave thermal radiation in air cavities is a frequently occurring and studied type of process in building physics. The cavity, which can be ventilated, may be a crawl-space, the space between glass panels in a window, closed air volumes in brick, and cracks and other voids in building thermal envelopes.

Fast and accurate routines for calculation of radiation (gray-diffuse) in rectangular cavities are developed. The theory for the method used in this section is presented in (Blomberg, 1996).

10.2 Input data
Figure 10.1 shows a cavity with the emissivity $\varepsilon_{\text{lower}}$ and the convective surface heat transfer coefficient α_{lower} at the lower side. The three other sides may in the same way have their own properties. The cavity may be ventilated with a constant inlet temperature T_v at the ventilation rate n (h$^{-1}$). In most cases the cavity is unventilated ($n=0$). The gas in the cavity (e.g. air or krypton) has the volumetric heat capacity C, (J/(m3·K)), which is the density times the specific heat capacity ($C=\rho c_p$).

![Figure 10.1: Input parameters for radiation inside a cavity.](image)

Each cavity is defined as an internal modification in the input mesh. The numerical grid defines the number of surface elements N_g for which radiative heat exchange is considered. Figure 10.2 shows the minimal case with one surface element on each side. The cavity has one cell (1·1). There are four elements with temperatures T_{s1}, T_{s2}, T_{s3}, and T_{s4}. Figure 10.3 shows two other examples: a cavity with 2·3 cells ($N_g=10$) to the left, and 10·10 cells ($N_g=40$) to the right. The maximum number of surface elements that is allowed is $N_g=250$. HEAT2 will automatically check that this limit is followed.
The program may consider several cavities with radiation exchange. The maximum number of cavities with radiation is 20. Each cavity may have its own set of data (\(\varepsilon \) and \(\alpha \) on the four sides, \(T_v, n, \) and \(C \)). See 5.6.2 for more info.

10.3 Output data

The following results are shown for each cavity: calculated surface temperatures \(T_{sj} \) for \(j = 1..N_R \), see Figure 10.4; temperatures \(T_{bj} \) in the cells closest to the cavity, the conductances \(K_{bj} \) between the center of the cell and the surface of the enclosing cells, the heat flows \(q_{bj} \) (W/m), and the gas temperature \(T_a \). The volume of the cavity per meter (m³/m), the number of radiation elements \(N_R \), and the ventilation conductance (or convectance) \(K_v \) (W/K), see (Blomberg, 1996), are also given.

Internal flows in (W/m) and (W/m²) through each of the four sides for the cavity is also given.
10.4 Numerical solution for the cavity

The method of the numerical solution for the heat balance for the cavity is given in (Blomberg, 1996). A number of equations has to be satisfied. The first one is a heat balance equation for the gas in the cavity. The second set of equations concerns balances for the surface temperatures. The third set is the radiation heat balance equations (Holman, 1986):

\[\frac{\varepsilon_i A_i}{1 - \varepsilon_i} (\sigma \tilde{T}_{m}^4 - J_i) = \sum_{j=1}^{N} A_i F_{ij} (J_i - J_j) \quad i = 1, \ldots, N_R \]

(5.1)

Here, \(J_i \) (W/m\(^2\)) is the radiosity of surface element \(i \), i.e. the total radiation which leaves surface \(i \) per unit area and unit time. The emissivity of the gray and diffuse surface \(i \) is denoted \(\varepsilon_i \), and \(\sigma \) is Stefan-Boltzmann's constant. The tilde sign \(\tilde{\cdot} \) denotes temperature in Kelvin. The view factors are denoted by \(F_{ij} \).

10.4.1 Radiation equations in temperature form

The radiation balance equations are reformulated to involve temperatures only. The temperatures are linearized around a suitable temperature level \(\tilde{T}_{so} \), see (Blomberg, 1996). In building physics applications (except fire), the surface temperatures \(T_{si} \) vary in a rather limit interval. The differences \(T_{si} - T_{so} \) (and \(T_{si} - T_{sj} \)) are small compared to \(\tilde{T}_{so} \). Then the error in the linearization becomes rather small.

HEAT2 may perform the calculations using the linearized form, or using a higher order of approximation. This may be specified in menu item Radiation settings, where ”1” means linear approximation and ”2” a second order of approximation. The maximum order that may be given is 5. The calculations will take somewhat longer time with higher orders of approximation. For most “normal” building physics applications, however, the linear approximation should be sufficient.

For each cavity, a suitable level of \(T_{so} \) (°C) is specified. The value of \(T_{so} \) should be equal to an estimated cavity temperature. As an example consider a window with the exterior temperature 5 °C and the interior temperature 15 °C. Here, \(T_{so} \) should be put to 10 °C. It may be noted that the choice of \(T_{so} \) is not particularly critical, especially with higher orders of approximation. Even in the case with a linear approximation, the error turns out to be relatively small.
11. Analysis of window frames

11.1 Introduction

Routines for simplified window frame analysis according to the proposed European Standard prEN ISO 10077-2:1998 (Thermal performance of windows, doors and shutters – Calculation of thermal transmittance – Part 2: Numerical method for frames) have been implemented in HEAT2 version 4. Note that this standard is preliminary and is likely to be changed. Please check for update information for HEAT2 in this aspect.

The particular problem of heat transmittance through the window frame concerns how to treat the cavities in the frame. The heat flow rate in each cavity is calculated using an equivalent thermal conductivity \(\lambda_{eq} \) according to the standards. This equivalent thermal conductivity includes the heat flux by conduction, by convection and by radiation and depends on the geometric and material characteristics of the cavity as well as the temperature distribution inside the cavity.

The maximum number of frame cavities is 250 in HEAT2 version 4.

11.2 Frame cavity calculation options

The equivalent thermal conductivity in rectangular and non-rectangular cavities depends on a given min and max temperature. There are four options in HEAT2 what temperatures to use, see Figure 11.1. The CEN/ISO proposal is to use the fix boundary air temperatures as min and max temperatures for all cavities (option 1), or to set \(T_{min}=5 \) and \(T_{max}=15 \) °C (option 2). HEAT2 gives two more options. The first one is to use arbitrarily chosen temperatures (option 3). The last option (4) uses the actual iteratively calculated minimum and maximum temperatures in each cavity. The equivalent thermal conductivities are updated iteratively at arbitrarily chosen iteration interval steps (the default value is 100). Note that all frame calculations can be done for steady-state or transient analysis. If detailed transient analysis is required, a more frequent update of the equivalent thermal conductivities could be made. Ideally, an update should be made every iteration (the step is 1) but this would increase calculation time since new conductances are calculated for each update. It might be a good idea to see the effect of different update steps. However, in most cases it should be enough to keep the update interval at 100.

![Figure 11.1: Frame cavity options.](Image)
11.3 Defining frame cavities in HEAT2 and HEAT2W

HEAT2 version 4 identifies the internal cavities and calculates the equivalent thermal conductivities according to the standards. Frame cavities are specified using solid material boxes with the reserved name “Frame cavity”, see Figure 11.2. If two or more boxes overlap they will be recognized as one cavity. The total number of found cavities is shown at the bottom line in the HEAT2 main window.

Frame cavities may also be entered in the pre-processor HEAT2W version 1.02 by using the material “Frame cavity” from the pick list (press Tab). An empty space surrounded by material will also be recognized as a frame cavity. Figure 11.3 and Figure 11.4 show a schematic example how input is made.

Figure 11.2: Cavities are given as solid materials with the name “Frame cavity” (the string may be written directly or taken from the material pick list.)

Figure 11.3: Geometry with two non-rectangular air cavities in HEAT2W (left) is exported to HEAT2 (right). The first cavity (1) is never explicitly drawn in HEAT2W but is recognized as a cavity since it is surrounded by material. The second cavity (2) is drawn using the material “Frame cavity” from the pick list.

Figure 11.4: The two cavities are here connected resulting in one defined cavity.
11.4 Example 1 - A PVC shutter profile with five cavities

Figure 11.5 shows a PVC shutter profile with five cavities. This is a test case from the proposed standards. The input in HEAT2W is made by drawing eight “Frame cavity” boxes on the PVC Profile, see input file Frame6.h2w. Alternatively, the geometry could be given using only PVC boxes. Boundary conditions are specified in HEAT2, see input file Frame6.dat. Figure 11.6 shows calculated heat flows for the PVC shutter profile with the five cavities. Note that the heat flow is not shown graphically in the cavities. This can however be shown by enabling menu item T and Q/Show T and Q in cavities.

Figure 11.5: A PVC shutter profile with five cavities. The cavities are given as eight boxes using “Frame cavity” in the material list, see example Frame6.dat.

Figure 11.6: Calculated heat flows for the PVC shutter profile with five cavities. The calculation with about 12000 numerical cells takes a few seconds on a Pentium II.

Figure 11.7: The info log shows data for frame cavities, such as equivalent thermal conductivities.
Figure 11.7 shows the info log when option 1 is used, see option list in Figure 11.1, and Figure 11.8 shows the info log when option 4 is used.

![Image of info log]

Figure 11.8: The info log shows here iteratively calculated temperatures when option 4 is used. The text indicates that 4 updates have been made. Compare equivalent thermal conductivities with those in the above figure.

Table 11:1 shows calculated heat flows through the boundaries for option 1 and 4 with different numerical meshes and relaxation factors ω. The CPU-time for a Pentium II 400 MHz is shown in the last column. An error less than 0.01% is used for the heat flows as a stop criterion, see Eq. 5.2.

<table>
<thead>
<tr>
<th>Option</th>
<th>Numerical cells</th>
<th>q, (W/m)</th>
<th>HEAT2 4.0 CPU-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11799</td>
<td>4.148</td>
<td>2 sec.</td>
</tr>
<tr>
<td>1</td>
<td>62500</td>
<td>4.149</td>
<td>195 sec. ($\omega=1.95$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36 sec. (optimized $\omega=1.99$)</td>
</tr>
<tr>
<td>4</td>
<td>11799</td>
<td>4.134</td>
<td>2 sec.</td>
</tr>
<tr>
<td>4</td>
<td>62500</td>
<td>4.134</td>
<td>203 sec. ($\omega=1.95$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 sec. (optimized $\omega=1.99$)</td>
</tr>
</tbody>
</table>

11.5 Example 2 – a window frame

The following example shows how to input and model a window frame. One of the quickest methods to give the geometry is to paste a drawing into the pre-processor HEAT2W and then draw "on" this. The drawing could come from a CAD-program or from a scanned picture. A good idea is to resize the drawing so that the lengths on the drawing and the rulers in HEAT2W fit (the scale factor might have to be changed). This could be done in HEAT2W by double clicking on the drawing and giving the width and height. This will stretch the bitmap to fit desirable size. If the drawing is in a non-bitmap format, e.g. metafile or other CAD-format, it might be better to resize the drawing in another program, (e.g. Microsoft Word), and then paste it into HEAT2W. This will give a higher picture quality.

Note that the pasted drawing will be saved in the HEAT2W input file (*.H2W). Since it is saved as a bitmap the file size may be very large. It might be better to delete the image before saving the H2W file. The drawing can however at anytime be pasted behind the drawn rectangles and moved to fit the given geometry.

The following problem is a reference case in the proposed standards, see Figure 11.9 - Figure 11.12. See input files Frame1.h2w and Frame1.dat.
Figure 11.9: Window frame drawing pasted into HEAT2W. The drawing is a metafile image that has been resized in WORD to as best as possible fit with the rulers in HEAT2W. One may have to try a few different sizes before it fits well.

Figure 11.10: Rectangles are drawn directly on the drawing. Note that it is sufficient to draw one of the four yellow bars (marked as 8) and then copy this to the three other.
Figure 11.11: The whole geometry is now drawn and can be exported to HEAT2. The underlying drawing has been deleted but may be pasted anytime if a correction/addition has to be made.

Figure 11.12: The geometry imported in HEAT2. The dotted lines at the two upper corners indicate that resistance lines have been added.

Most of the cavities do not have to be drawn since they are surrounded by material and then recognized as frame cavities, see Figure 11.11. There are three explicitly drawn rectangles of “Frame cavity” material. Figure 11.12 shows this as cavity number 1, 2, and 6. Note the vertical “frame cavity” bar at the left boundary in Figure 11.11. If this was not drawn, the cavity 1 would have been interpreted as a number of boundary segments instead. This is the same reason as for cavity number 6. Also note that it is sufficient to draw just one rectangle at the left part of cavity 1. The rest of the cavity will be geometrically defined by the surrounding material. Cavity (2) is drawn here overlapping another material box (two rectangles drawn in total), but it would also have been possible to just draw the surrounding material using four bars (four rectangles drawn in total).

The red insulation panel to the right in Figure 11.11 is actually longer than the frame itself. The panel length may later on be corrected in HEAT2. Boundary conditions are given in HEAT2 ($T=20$ and $R=0.13$).
on upper segments and $T=0$ and $R=0.04$ on the lower ones, adiabatic condition on the vertical sides). The standard proposes a “reduced radiation” boundary condition of 0.20 m²⋅K/W at the internal sides in edges or junctions between two surfaces. This is done in HEAT2 by inserting some mesh points, adjusting the lengths in the new mesh segments, and defining four resistance lines of 0.07 m²⋅K/W that is added to the boundary condition surface resistance of 0.13 m²⋅K/W, see Figure 11.12.

When the calculation is started, HEAT2 will ask whether or not to use twice the equivalent thermal conductivity for cavities at external boundaries with a prescribed temperature, such as in the case of cavity 6. See the standard for special rules on these so-called ventilated cavities. Cavity 1 will automatically be treated as a normal cavity since the boundary condition is adiabatic.

The info log, see Figure 11.13 and Figure 11.14, shows the frame cavity option, what temperatures are used, the width, height, and area of each cavity, the calculated max and min temperatures and the radiative (h_a) and convective (h_c) heat transfer coefficients and the equivalent thermal conductivity for each cavity.

Figure 11.15 shows temperatures and calculated equivalent thermal conductivities when option 4 is used. Figure 11.16 and Figure 11.17 show heat flow intensity (W/m²) and boundary heat flows.

![info log](image)

Figure 11.13: The info log shows data for frame cavities, such as equivalent thermal conductivities. Option 1 is used here. In this case, twice the thermal conductivity is used for cavity 6 according to the standards.
Figure 11.14: The info log shows here iteratively calculated temperatures when option 4 is used. The text indicates that 76 updates have been made. Compare equivalent thermal conductivities with those in Figure 11.13.

![Figure 11.14](image1)

Figure 11.15: Temperatures and calculated equivalent thermal conductivities using option 4.

Table 11.2 shows calculated heat flows through the boundaries for option 1 and 4 with different numerical meshes and relaxation factors ω. The CPU-time for a Pentium II 400 MHz is shown in the last column. An error less than 0.01% is used for the heat flows as a stop criterion, see Eq. 5.1.

![Table 11.2](image2)

col See Appendix D for color image
Table 11.2: Heat flow through frame and benchmarks using a Pentium II 400 MHz.

<table>
<thead>
<tr>
<th>Option</th>
<th>Numerical cells</th>
<th>q, (W/m)</th>
<th>HEAT2 4.0 CPU-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9398</td>
<td>11.45</td>
<td>154 sec. ($\omega=1.95$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 sec. ($\omega=2.0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 sec. (optimized $\omega=1.998$)</td>
</tr>
<tr>
<td>1</td>
<td>47548</td>
<td>11.50</td>
<td>1.5 hours ($\omega=1.95$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>145 sec. (optimized $\omega=2.0$)</td>
</tr>
<tr>
<td>4</td>
<td>9398</td>
<td>11.17</td>
<td>170 sec. ($\omega=1.95$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 sec. ($\omega=2.0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 sec. (optimized $\omega=1.998$)</td>
</tr>
<tr>
<td>4</td>
<td>47548</td>
<td>11.22</td>
<td>1.5 hours ($\omega=1.95$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>151 sec. (optimized $\omega=2.0$)</td>
</tr>
</tbody>
</table>

Figure 11.16_{co1}: Heat flow intensity (W/m²) and boundary heat flows.

_{co1} See Appendix D for color image
Figure 11.17col: Heat flow intensity and direction (here menu item T and Q/Show T and Q in cavities is enabled to show it also in the cavities). The area around cavity 7 is enlarged.
12. A few tips

12.1 Introduction
There are different kinds of problems involved with the input and simulation of a problem. This chapter gives a few tips that may come in handy.

12.2 Numerical aspects

12.2.1 Numerical mesh
The number of cells required to obtain satisfactory numerical accuracy depends on various parameters such as geometry and materials. The following criterion how to choose a proper mesh is recommended as a European standard (CEN, 1995). The sum of the absolute values of all the heat flows entering through the boundaries is calculated twice, once for \(n \) cells and once for \(2n \) cells. The relative difference between the flows must be smaller than 2%. Further mesh division is required if the difference is larger.

If a transient calculation takes too long time try to increase the size of the cell that determines the stable time step. The info log (item Output/Info log) contains information of input data and generated numerical mesh for the considered problem, see Figure 5.45. The stable time step is shown and the location for the cell that determines it. The stable time step is often caused by small cells, especially those with high thermal conductivities. The worst cases are often problems with large differences in thermal conductivity, such as steel in insulation. It is often sufficient to consider only one cell (or a few cells) for the steel.

12.2.2 Expansive meshes
Expansive meshes may be used to concentrate the cells towards areas with large temperature gradients. Be aware that an expansive mesh may lead to small computational cells causing the time-step to be very short. A badly chosen computational mesh can increase the computational time dramatically, especially for transient analyses. Do not use extreme expansion coefficients with a large number of cells that would cause very small cells in a segment. "Normal" values are in most cases between 0.8-1.25.

12.2.3 Steady-state calculations
The following criterion for when to stop a calculation for steady-state is recommended as a European standard (CEN, 1995). The sum of all heat flows (positive and negative) entering the boundaries, divided by the sum of the absolute values of all these heat flows, must be less than 0.001.

12.2.4 Symmetric cases
Use symmetry whenever possible. A slab on the ground may be one example when it is sufficient to consider half the problem.

12.2.5 Computational area for calculations of heat losses to the ground
The computational area for calculations of heat losses to the ground should involve a part of the ground. A rule of thumb is to use an extension three times the width of the house for a two-dimensional calculation. An adiabatic condition is put on the vertical and horizontal boundaries at this distance. It may be noted that the horizontal extension from the house is more important than the vertical one. More recipes for slab on the ground calculations are given in (Hagentoft, 1988).

12.2.6 Transient calculations for heat losses to the ground
A transient calculation for heat losses to the ground from a house may require hours or even days to perform. Using less numerical cells gives shorter calculation time but increases the numerical error. It may be a good idea to make steady-state calculations (that probably requires only a few minutes) for different
numerical mesh to obtain the numerical errors, see Section 12.2.1. When solving for a transient case using a mesh with relative few cells, one can assume the same numerical error as in the steady-state cases. As an example, if the calculated steady state heat loss for a chosen mesh is 5 % too small compared with a case with more cells, one can add this error to the transient heat losses.

Another problem is the long time scale for the ground. In HEAT2, the initial temperatures will be used when a transient simulation is started. It will probably take 10-15 simulated years until the temperatures reaches semi steady-state (the same temperature variation in the ground year after year). It may be a good idea to first make a steady-state calculation using the mean annual outdoor air temperature, and then start the transient simulation using the calculated temperatures. The process is described in the list below.

1. Give the input data for the problem. Do not forget to give correct heat capacities.
2. Perform a steady-state simulation using the mean annual air temperature as a boundary condition.
3. Change the boundary condition to e.g. a sinusoidal variation of the outdoor temperature.
4. Start the transient calculation. Let the problem be simulated for a few years before using the results (one may check that the problem is semi steady-state by comparing results for different consecutive years).
5. A sudden cold spell (or several ones) may now be simulated by changing the boundary condition for the outdoor temperature (e.g. constant or step-wise constant values).
6. Interesting results may be e.g. maximum heat loss, coldest floor temperature, and estimation of the ground frost depth to avoid frost heave.

12.2.7 Sloping boundaries

Sloping internal and external boundaries may be approximated by steps. It is often relatively easy to do this using the post-processor HEAT2W, see Figure 9.36.
References

Hagentoft, C-E. 1988. *Heat loss to the ground from a building*. Department of Building Physics, Lund University. P.O. Box 118, S-221 00 Lund, Sweden. CODEN:LUTVDG/TVBH-1004.

Appendix A. Limits and restrictions on input data

HEAT2 has the following limits for the input data:

- Number of computational cells: 62,500 (250 \times 250)
- Number of computational cells in the x-direction: 250
- Number of computational cells in the y-direction: 250
- Number of input mesh segments in the x-direction: 250
- Number of input mesh segments in the y-direction: 250
- Number of areas with different thermal properties: 250
- Number of areas with different initial temperatures: 10
- Number of boundaries: 250
- Number of boundary condition types: 20
- Number of internal modification types: 20
- Number of internal modification areas: 100
- Number of cavities with radiation: 20
- Number of radiative elements in each cavity: 250
- Number of functions: 3
- Number of steps in each step-wise function type: about half a million
- Number of resistance lines: 50

HEAT2 has the following restrictions for input data (\textit{ims} stands for input mesh segments):

<table>
<thead>
<tr>
<th>Denotation</th>
<th>Description</th>
<th>Restriction</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{max}</td>
<td>Num. of ims in x-dir</td>
<td>$1 \leq I_{\text{max}} \leq 250$</td>
<td></td>
</tr>
<tr>
<td>J_{max}</td>
<td>Num. of ims in y-dir</td>
<td>$1 \leq J_{\text{max}} \leq 250$</td>
<td></td>
</tr>
<tr>
<td>ΔX_i</td>
<td>Length of ims in x-dir</td>
<td>>0</td>
<td>m</td>
</tr>
<tr>
<td>ΔY_j</td>
<td>Length of ims in y-dir</td>
<td>>0</td>
<td>m</td>
</tr>
<tr>
<td>N_i</td>
<td>Number of cells in each ims in x-dir</td>
<td>$1 \leq N_i \leq 250$</td>
<td></td>
</tr>
<tr>
<td>N_j</td>
<td>Number of cells in each ims in y-dir</td>
<td>$1 \leq N_j \leq 250$</td>
<td></td>
</tr>
<tr>
<td>λ_x</td>
<td>Thermal conductivity in x-dir</td>
<td>>0</td>
<td>W/(m\cdot K)</td>
</tr>
<tr>
<td>λ_y</td>
<td>Thermal conductivity in y-dir</td>
<td>>0</td>
<td>W/(m\cdot K)</td>
</tr>
<tr>
<td>C</td>
<td>Volumetric heat capacity</td>
<td>>0</td>
<td>MJ/(m3\cdot K)</td>
</tr>
<tr>
<td>R</td>
<td>Surface resistance</td>
<td>≥ 0</td>
<td>m2-K/W</td>
</tr>
<tr>
<td>R_x</td>
<td>Internal resistance in x-dir</td>
<td>≥ 0</td>
<td>m2-K/W</td>
</tr>
<tr>
<td>R_y</td>
<td>Internal resistance in y-dir</td>
<td>≥ 0</td>
<td>m2-K/W</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>no restriction</td>
<td>°C</td>
</tr>
<tr>
<td>q</td>
<td>Heat flow over boundary</td>
<td>no restriction</td>
<td>W/m2</td>
</tr>
</tbody>
</table>
Appendix B. How to add and edit materials

How to add and edit materials in HEAT2

MTRL40.TXT is a text file used by HEAT2 that contains thermal data for materials, i.e. thermal conductivities and volumetric heat capacities. This file may be modified to your own needs. The file is listed below. Open the file in an editor, e.g. Word or Notepad, to edit it.

There are two groups in MTRL40.TXT. The first group contains thermal properties that is taken from Catalogue of Material Properties, International Energy Agency, report Annex XIV, Volume 3. Average data is taken for density, specific heat capacity, and thermal conductivity.

The second group has thermal conductivities for window materials from CEN. Note that heat capacities are not given here. The data should only be used for steady-state calculations.

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>λ_x</th>
<th>λ_y</th>
<th>(λ_y does not have to be specified if $\lambda_x=\lambda_y$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEA Report Annex XIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td>1.49</td>
<td>.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>1.83</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete cellular</td>
<td>.53</td>
<td>.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete lightweight</td>
<td>1.83</td>
<td>.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cork</td>
<td>.21</td>
<td>.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass (window)</td>
<td>2.3</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass-wool</td>
<td>.062</td>
<td>.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum board</td>
<td>.88</td>
<td>.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masonry</td>
<td>.88</td>
<td>.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortar</td>
<td>1.21</td>
<td>.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plywood</td>
<td>1.17</td>
<td>.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene expanded</td>
<td>.039</td>
<td>.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene extruded</td>
<td>.059</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock-wool</td>
<td>.094</td>
<td>.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>3.7</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood (Oak)</td>
<td>1.7</td>
<td>.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodwool cement</td>
<td>.64</td>
<td>.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEN (windows, no capacities)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum alloy</td>
<td>1</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless steel</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardwood</td>
<td>1</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwood</td>
<td>1</td>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plywood</td>
<td>1</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redwood/cedar</td>
<td>1</td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLAZING MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Float Glass</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plexiglass</td>
<td>1</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass fibre resin</td>
<td>1</td>
<td>.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC/ Vinyl (rigid)</td>
<td>1</td>
<td>.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood chip board</td>
<td>1</td>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous wood fibre panel</td>
<td>1</td>
<td>.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACER MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyl rubber (solid)</td>
<td>.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass fibre resin</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester resin</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica gel (desiccant)</td>
<td>.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicone Foam</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL BREAK MATERIALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene (high dens)</td>
<td>.52</td>
</tr>
<tr>
<td>Polyvinyl</td>
<td>.4</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>.3</td>
</tr>
<tr>
<td>Polyamide</td>
<td>.3</td>
</tr>
<tr>
<td>Glass fibre</td>
<td>.23</td>
</tr>
<tr>
<td>Epoxy fibre</td>
<td>.23</td>
</tr>
<tr>
<td>Acrylic resin</td>
<td>.2</td>
</tr>
<tr>
<td>PVC</td>
<td>.17</td>
</tr>
<tr>
<td>FRP Nylon</td>
<td>.23</td>
</tr>
</tbody>
</table>

SOLID PLASTICS

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycarbonate</td>
<td>.23</td>
</tr>
<tr>
<td>PTFE</td>
<td>.24</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>.4</td>
</tr>
<tr>
<td>PVC</td>
<td>.2</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>.17</td>
</tr>
<tr>
<td>Acrylic resin</td>
<td>.2</td>
</tr>
<tr>
<td>Epoxy resin</td>
<td>.2</td>
</tr>
</tbody>
</table>

SEALANTS

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone</td>
<td>.35</td>
</tr>
<tr>
<td>Urethane (liquid)</td>
<td>.3</td>
</tr>
<tr>
<td>Butyl (hot melt)</td>
<td>.24</td>
</tr>
<tr>
<td>Polysobutylene</td>
<td>.24</td>
</tr>
<tr>
<td>Polysulphide</td>
<td>.19</td>
</tr>
</tbody>
</table>

WEATHERSTRIPPING

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>.25</td>
</tr>
<tr>
<td>Neoprene</td>
<td>.25</td>
</tr>
<tr>
<td>Vinyl (flexible)</td>
<td>.12</td>
</tr>
<tr>
<td>Foam rubber</td>
<td>.06</td>
</tr>
<tr>
<td>Mohair</td>
<td>.14</td>
</tr>
</tbody>
</table>

How to add and edit materials in HEAT2W

Section 6.4 describes how to edit the materials in HEAT2W. The thermal properties are taken from *Catalogue of Material Properties, International Energy Agency, report Annex XIV, Volume 3* (the same as the ones used in HEAT2).
Appendix C. Input data file example

**
* HEAT2 version 4.00 - Input data file CENEX1.DAT
* Date: 10/28/99 Time: 9:27:48 AM
* Thomas Blomberg, Lund Group for Computational Building Physics
**

-MEMORY NOTES FOR PROJECT-
Heat flow through a wall with metal studs

* Following blocks are done:
 Geometrical Meshes
 Thermal Properties
 Functions
 Boundary Conditions
 Internal Modifications
 Internal Resistances
 Initial Temperatures
 Simulation and Printing

* GEOMETRICAL MESHES BLOCK *

* Number of input mesh intervals in X-direction: 4
* Number of input mesh intervals in Y-direction: 8
* Description of boundaries
bound from I J
 1 :0 :0
 2 :4 :0
 3 :4 :8
 4 :0 :8

* Lengths, number of computation cells and expanding coefficient between the mesh points
* X-direction
 length [m] comp cells exp coeff
0 and 1 : 0.0015 : 3 : 1
1 and 2 : 0.0068 : 5 : 2
2 and 3 : 0.0068 : 5 : 0.5
3 and 4 : 0.485 : 20 : 1.4

* Y-direction
 length [m] comp cells exp coeff
0 and 1 : 0.0015 : 3 : 1
1 and 2 : 0.0168 : 5 : 1.6
2 and 3 : 0.0168 : 5 : 0.5
3 and 4 : 0.0015 : 5 : 0.7
4 and 5 : 0.0025 : 5 : 1.4
5 and 6 : 0.0025 : 5 : 0.7
6 and 7 : 0.003 : 5 : 1.3
7 and 8 : 0.003 : 5 : 0.7

* THERMAL PROPERTIES BLOCK *

* Basic properties for whole area
 Lambda(x) : 230 [W/(m*K)]
 Lambda(y) : 230 [W/(m*K)]
 Volumetric heat capacity : 1 [MJ/(m³*K)]
 none

* Number of partial areas :4
* Area and corresponding thermal properties
* Area lower left upper right Lambda(x) Lambda(y) C
 * I J I J [W/(m²K)] [W/(m²K)] [MJ/(m³K)]
 1 :1 :1 :4 :3 :0.029 :0.029 :0.029
 2 :3 :4 :6 :5 :0.029 :0.029 :0.029
 3 :0 :4 :3 :6 :0.12 :0.12 :0.12
 4 :0 :6 :4 :8 :1.15 :1.15 :1.15

**
* FUNCTIONS BLOCK *
**

* Combinations
* A Periodic f(t)=f1+f2*Sin(2*pi*(t-t0)/tp)
* B Stepwise Constant
* C Stepwise Linear

* Number of Functions:3
* Typenumber/Combination
 1/ :A f1:1 f2:1 t0:0.000 tp:86400.000
 2/ :A f1:1 f2:1 t0:0.000 tp:86400.000
 3/ :A f1:1 f2:1 t0:0.000 tp:86400.000

**
* BOUNDARY CONDITIONS BLOCK *
**

* Combinations
* A Flow - Constant
* B Temp - Constant
* C Flow - Function
* D Temp - Function

* Number of Types:3
* Typenumber/Combination
 1/ :A Flow : 0 [W/m]
 2/ :B Temperature : 0 °C R : 0.06 [m²K/W]
 3/ :B Temperature : 20 °C R : 0.11 [m²K/W]

* Typenumber/Corresponding Boundaries (list ends with zero)
 1/ :2 :4 :0
 2/ :3 :0
 3/ :1 :0

**
* INTERNAL MODIFICATIONS BLOCK *
**

* Combinations
* A Heat source - Constant
* B Heat source - Function
* C Area with given temp - Constant
* D Area with given temp - Function
* E Hole with air (no capacity)
* F Hole with fluid (with capacity)
* G Hole with air (radiation+vent.)
* H Pipe (heat source) - Constant
* I Pipe (heat source) - Function
* J Pipe (given temp) - Constant
* K Pipe (given temp) - Function

* Number of Internal Modifications:1
* Typenumber/Combination
 1/ :A Flow : 1 [W/m]

* Number of Areas :0

**
* INTERNAL RESISTANCES BLOCK *
**

* Number of resistance lines :0
* INITIAL TEMPERATURES BLOCK *

* Basic temperature for whole area : 0 °C

* Number of partial areas : 0

* SIMULATION/PRINTING BLOCK *

Start time: 0
Stop time: 31536000.000 s <=> 1y
Print start time: 0.000 s
Print Stop time: 31536000.000 s <=> 1y
Time interval: 31536000.000 s <=> 1y
Print Temperatures : Y
Print Boundary Flows : Y
Results To Screen : Y
Results To File : N

& 1.995 (Relaxation)
& 0 (Flow crit)
& 1E-5 (Flow crit.)
& 0.0001 (Temp crit.)
& 100000 (Max iter.)
& 1 (Update)
& 10 (Iter)
& 3 (CPU)
& 3600 (Time)
& 0 (record disabled)
& 0 (Number of iterations)
& 1 (notify when solved enabled)
& 1 (beep when solved enabled)
& 1 (Order of approximation)
& 0 (Frame cavity option)
& 0 (Frame cavity Tmin)
& 20 (Frame cavity Tmax)
& 0 (Frame cavity direction of heat flows)
& 100 (Frame cavity iter between update)
& 1 (Column for graphics)
& 1 (Num Record columns)
& 2 (index)
& 0 (x)
& 0 (y)